如圖:在山腳A測得山頂P的仰角為α=30°,沿傾斜角β=15°的斜坡向上走100米到B,在B處測得山頂P的仰角為γ=60°,則山高h(yuǎn)=
 
(單位:米)
考點:解三角形的實際應(yīng)用
專題:應(yīng)用題,解三角形
分析:△PAB中,∠PAB=α-β=15°,∠BPA=(90°-α)-(90°γ)=γ-α=30°,由正弦定理可求PB,根據(jù)PQ=PC+CQ=PB•sinγ+asinβ 可得結(jié)果.
解答: 解:△PAB中,∠PAB=α-β=15°,∠BPA=(90°-α)-(90°-γ)=γ-α=30°,
100
sin30°
=
PB
sin15°
,∴PB=50(
6
-
2
).
∴PQ=PC+CQ=PB•sinγ+100sinβ=50(
6
-
2
)×sin60°+10sin15°=50
2

即山高為50
2
米.
故答案為:50
2
米.
點評:本題考查正弦定理的應(yīng)用,直角三角形中的邊角關(guān)系,求出PB是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,E為PC中點,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求證:BE∥平面PAD;
(2)求證:BC⊥平面PBD;
(3)已知在側(cè)棱PC上存在一點Q,使得二面角Q-BD-P為45°,求
PQ
PC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)過點(2,0),且橢圓C的離心率為
1
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若動點P在直線x=-1上,過P作直線交橢圓C于M,N兩點,且P為線段MN中點,再過P作直線l⊥MN.證明:直線l恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)a,b,定義a﹩b=(a-b)2,那么(x-y)2﹩(y-x)2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
1-x
+
x+3
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足2xy=1(x<0),則x+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2
2
,BC=4
2
,PA=2,點M在線段PD上.
(Ⅰ) 求證:AB⊥PC;
(Ⅱ) 若二面角M-AC-D的大小為45°,求AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:C
 
2
5
÷C
 
3
7
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
2x
x+2
,x1=1,xn=f(xn-1)(n≥2,n∈N*
(1)求x2,x3,x4的值;
(2)歸納并猜想{xn}的通項公式;
(3)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

同步練習(xí)冊答案