【題目】如圖,在三棱柱中,四邊形是矩形, ,平面平面.
(1)求證: ;
(2)若, , ,求二面角的余弦值.
【答案】(1) 見(jiàn)解析(2)
【解析】試題分析:(1)由, ,可推出,再由四邊形是矩形可得,從而可證平面,設(shè)與相交于點(diǎn), 與相交于點(diǎn),連接,可證平面,結(jié)合平面平面即可證明;(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得平面的法向量與平面的法向量,利用向量的夾角公式即可得出余弦值.
試題解析:(1)在三棱柱中
,
又四邊形是矩形
,
平面
設(shè)與相交于點(diǎn), 與相交于點(diǎn),連接
與均是平行四邊形
, 平面
,
面
又平面平面
面
(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系
由(1)及題設(shè)可知, 是菱形,
, , ,
,
設(shè)平面的法向量
,即
解得:
又由(1)可知: 平面
平面的法向量
二面角的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),
①若曲線與直線相切,求c的值;
②若曲線與直線有公共點(diǎn),求c的取值范圍.
(2)當(dāng)時(shí),不等式對(duì)于任意正實(shí)數(shù)x恒成立,當(dāng)c取得最大值時(shí),求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形兩邊長(zhǎng)分別為和,第三邊上的中線長(zhǎng)為,則三角形的外接圓半徑為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, , .
()求證: 平面.
()求二面角的余弦值.
()在線段(含端點(diǎn))上,是否存在一點(diǎn),使得平面,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】()見(jiàn)解析;();()存在,
【解析】試題分析:(1)由題意,證明, ,證明面;(2)建立空間直角坐標(biāo)系,求平面和平面的法向量,解得余弦值為;(3)得, ,所以, ,所以存在為中點(diǎn).
試題解析:
()∵, ,∴.
∵,∴,∴, .
∵,且,
、面,∴面.
()知,∴.
∵面, , , 兩兩垂直,以為坐標(biāo)原點(diǎn),
以, , 為, , 軸建系.
設(shè),則, , , , ,
∴, .
設(shè)的一個(gè)法向量為,
∴,取,則.
由于是面的法向量,
則.
∵二面角為銳二面角,∴余弦值為.
()存在點(diǎn).
設(shè), ,
∴, , ,
∴, .
∵面, .
若面,∴,
∴,
∴,∴,∴存在為中點(diǎn).
【題型】解答題
【結(jié)束】
19
【題目】已知函數(shù).
()當(dāng)時(shí),求此函數(shù)對(duì)應(yīng)的曲線在處的切線方程.
()求函數(shù)的單調(diào)區(qū)間.
()對(duì),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的值;
(2)求的單調(diào)區(qū)間及極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是直角梯形,其中,,.點(diǎn)是的中點(diǎn),將沿折起如圖,使得平面.點(diǎn)、分別是線段、的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 經(jīng)過(guò)點(diǎn),焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓交于不同的兩點(diǎn)、,線段的垂直平分線交軸交于點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:經(jīng)過(guò)點(diǎn),離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)坐標(biāo)原點(diǎn)作直線交橢圓于、兩點(diǎn),過(guò)點(diǎn)作的平行線交橢圓于、兩點(diǎn).是否存在常數(shù), 滿足?若存在,求出這個(gè)常數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.過(guò),兩點(diǎn)的直線方程為
B.點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為
C.直線與兩坐標(biāo)軸圍成的三角形的面積是2
D.經(jīng)過(guò)點(diǎn)且在軸和軸上截距都相等的直線方程為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com