【題目】如圖,在三棱柱中,四邊形是矩形, ,平面平面.

(1)求證: ;

(2)若, ,求二面角的余弦值.

【答案】(1) 見(jiàn)解析(2)

【解析】試題分析:(1)由, ,可推出,再由四邊形是矩形可得,從而可證平面,設(shè)相交于點(diǎn), 相交于點(diǎn),連接,可證平面,結(jié)合平面平面即可證明;(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得平面的法向量與平面的法向量,利用向量的夾角公式即可得出余弦值.

試題解析:(1)在三棱柱

,

四邊形是矩形

,

平面

設(shè)相交于點(diǎn) 相交于點(diǎn),連接

均是平行四邊形

平面

,

又平面平面

(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系

由(1)及題設(shè)可知, 是菱形,

, ,

,

設(shè)平面的法向量

,

解得:

又由(1)可知: 平面

平面的法向量

二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),

①若曲線與直線相切,求c的值;

②若曲線與直線有公共點(diǎn),求c的取值范圍.

(2)當(dāng)時(shí),不等式對(duì)于任意正實(shí)數(shù)x恒成立,當(dāng)c取得最大值時(shí),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形兩邊長(zhǎng)分別為,第三邊上的中線長(zhǎng)為,則三角形的外接圓半徑為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , 平面, ,

)求證: 平面

)求二面角的余弦值.

)在線段(含端點(diǎn))上,是否存在一點(diǎn),使得平面,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】)見(jiàn)解析;;)存在,

【解析】試題分析:(1由題意,證明 ,證明;(2)建立空間直角坐標(biāo)系,求平面和平面的法向量,解得余弦值為;(3)得, ,所以, ,所以存在中點(diǎn).

試題解析:

,

,,

,且,

,

)知,

, , , 兩兩垂直,以為坐標(biāo)原點(diǎn),

, , , 軸建系.

設(shè),則, , , ,

,

設(shè)的一個(gè)法向量為,

,取,則

由于是面的法向量,

∵二面角為銳二面角,∴余弦值為

)存在點(diǎn)

設(shè), ,

, ,

,

,

,

,∴,∴存在中點(diǎn).

型】解答
結(jié)束】
19

【題目】已知函數(shù)

)當(dāng)時(shí),求此函數(shù)對(duì)應(yīng)的曲線在處的切線方程.

)求函數(shù)的單調(diào)區(qū)間.

)對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的值;

2)求的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是直角梯形,其中,,.點(diǎn)的中點(diǎn),將沿折起如圖,使得平面.點(diǎn)、分別是線段、的中點(diǎn).

(1)求證:;

(2)求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 經(jīng)過(guò)點(diǎn),焦距為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線與橢圓交于不同的兩點(diǎn)、,線段的垂直平分線交軸交于點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓經(jīng)過(guò)點(diǎn),離心率為. 

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)坐標(biāo)原點(diǎn)作直線交橢圓、兩點(diǎn),過(guò)點(diǎn)的平行線交橢圓、兩點(diǎn).是否存在常數(shù), 滿足?若存在,求出這個(gè)常數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.過(guò)兩點(diǎn)的直線方程為

B.點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為

C.直線與兩坐標(biāo)軸圍成的三角形的面積是2

D.經(jīng)過(guò)點(diǎn)且在軸和軸上截距都相等的直線方程為

查看答案和解析>>

同步練習(xí)冊(cè)答案