【題目】已知數(shù)列中,,,的前項(xiàng)和為,且滿足.

1)試求數(shù)列的通項(xiàng)公式;

2)令,的前項(xiàng)和,證明:;

3)證明:對(duì)任意給定的,均存在,使得時(shí),(2)中的恒成立.

【答案】1;(2)證明見解析;(3)證明見解析

【解析】

(1)由題意首先整理所給的遞推關(guān)系式,然后利用累加法即可求得數(shù)列的通項(xiàng)公式;

(2)結(jié)合(1)中的通項(xiàng)公式裂項(xiàng)求和求得數(shù)列的前項(xiàng)和即可證得題中的結(jié)論;

(3)首先求解不等式得到實(shí)數(shù)n的取值范圍,然后結(jié)合所得的結(jié)果給出的值即可.

1)由題意知n≥3),

n≥3),

n≥3.

檢驗(yàn)知n=1,2時(shí),結(jié)論也成立,

.

2 由于bn===

,

所以,.

3)若Tnm,其中m∈(0),則有m,

2n+1,

,

(其中[x]表示不超過x的最大整數(shù)),

則當(dāng)時(shí),.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)上,以為切點(diǎn)的的切線的斜率為,過外一點(diǎn)(不在軸上)作的切線、,點(diǎn)、為切點(diǎn),作平行于的切線(切點(diǎn)為),點(diǎn)、分別是與、的交點(diǎn)(如圖):

1)用、的縱坐標(biāo)表示直線的斜率;

2)若直線的交點(diǎn)為,證明的中點(diǎn);

3)設(shè)三角形面積為,若將由過外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做切線三角形,如,再由、切線三角形,并依這樣的方法不斷作切線三角形……,試?yán)?/span>切線三角形的面積和計(jì)算由拋物線及所圍成的陰影部分的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)三口之家,共個(gè)大人,個(gè)小孩,約定星期日乘紅色、白色兩輛轎車結(jié)伴郊游,每輛車最多乘坐人,其中兩個(gè)小孩不能獨(dú)坐一輛車,則不同的乘車方法種數(shù)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角AB,C對(duì)應(yīng)的邊分別是a,bc,已知cos2A﹣3cosB+C=1

1)求角A的大;

2)若△ABC的面積S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若不等式對(duì)于任意成立,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓,設(shè)是橢圓上任一點(diǎn),從原點(diǎn)向圓作兩條切線,切點(diǎn)分別為

(1)若直線互相垂直,且點(diǎn)在第一象限內(nèi),求點(diǎn)的坐標(biāo);

(2)若直線的斜率都存在,并記為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點(diǎn),過點(diǎn)的直線交橢圓于,兩點(diǎn),且的周長為12

(Ⅰ)求橢圓的方程

(Ⅱ)過點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),,試判斷在軸上是否存在點(diǎn),使得是以為底邊的等腰三角形若存在,求點(diǎn)橫坐標(biāo)的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中是自然對(duì)數(shù)的底數(shù).

,使得不等式成立,試求實(shí)數(shù)的取值范圍;

)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過點(diǎn)和點(diǎn).

1)求函數(shù)的最大值與最小值;

2)將函數(shù)的圖象向左平移個(gè)單位后,得到函數(shù)的圖象;已知點(diǎn),若函數(shù)的圖象上存在點(diǎn),使得,求函數(shù)圖象的對(duì)稱中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案