4.已知點(diǎn)P是雙曲線$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2為該雙曲線的左右焦點(diǎn),O為坐標(biāo)原點(diǎn),則$\frac{|P{F}_{1}|+|P{F}_{2}|}{|OP|}$的最大值為( 。
A.2$\sqrt{2}$B.2C.$\sqrt{2}$D.$\sqrt{6}$

分析 由題意,P在頂點(diǎn)處取得最大值,不妨取頂點(diǎn)(2$\sqrt{2}$,0),即可求出$\frac{|P{F}_{1}|+|P{F}_{2}|}{|OP|}$的最大值.

解答 解:由題意,分子最大且分母最小時(shí),即P在頂點(diǎn)處取得最大值,不妨取頂點(diǎn)(2$\sqrt{2}$,0),則$\frac{|P{F}_{1}|+|P{F}_{2}|}{|OP|}$的最大值為$\frac{4\sqrt{3}}{2\sqrt{2}}$=$\sqrt{6}$,
故選D.

點(diǎn)評(píng) 本題考查雙曲線的方程與性質(zhì),考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且a≠b,則$\frac{sinC(bcosA-acosB)}{asinA-bsinB}$=(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.狄利克雷是德國(guó)著名數(shù)學(xué)家,函數(shù)D(x)=$\left\{\begin{array}{l}{1,x為有理數(shù)}\\{0,x為無(wú)理數(shù)}\end{array}\right.$被稱為狄利克雷函數(shù),下面給出關(guān)于狄利克雷函數(shù)D(x)的五個(gè)結(jié)論:
①若x是無(wú)理數(shù),則D(D(x))=0;
②函數(shù)D(x)的值域是[0,1];
③函數(shù)D(x)偶函數(shù);
④若T≠0且T為有理數(shù),則D(x+T)=D(x)對(duì)任意的x∈R恒成立;
⑤存在不同的三個(gè)點(diǎn)A(x1,D(x1)),B(x2,D(x2)),C(x3,D(x3)),使得△ABC為等邊角形.
其中正確結(jié)論的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(理)如圖,棱柱ABCD-A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC=∠A1AC=60°,平面AA1CC1⊥平面ABCD.
(1)證明:BD⊥AA1;
(2)求二面角D-AA1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且當(dāng)x∈[-1,1]時(shí),f(x)=|x|,函數(shù)g(x)=$\left\{\begin{array}{l}{sinπx,x≥0}\\{{2}^{x},x<0}\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點(diǎn)的個(gè)數(shù)為(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=2ln(x-1)-(x-1)2
(1)求f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)+x2-3x-a=0在區(qū)間[2,4]內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若集合A={0,1,2,3,4,6},集合B={y|y=2x,x∈A},則A∩B的元素個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)函數(shù)f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)(|φ|<$\frac{π}{2}$),且其圖象關(guān)于直線x=0對(duì)稱,則(  )
A.y=f(x)的最小正周期為π,且在(0,$\frac{π}{2}$)上為增函數(shù)
B.y=f(x)的最小正周期為π,且在(0,$\frac{π}{2}$)上為減函數(shù)
C.y=f(x)的最小正周期為$\frac{π}{2}$,且在(0,$\frac{π}{4}$)上為增函數(shù)
D.y=f(x)的最小正周期為$\frac{π}{2}$,且在(0,$\frac{π}{4}$)上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.$\overrightarrow a=(x\;,\;\;2)$,$\overrightarrow b=(2\;,\;\;-5)$,且$\overrightarrow a$與$\overrightarrow b$夾角為鈍角,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案