19.已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且當(dāng)x∈[-1,1]時,f(x)=|x|,函數(shù)g(x)=$\left\{\begin{array}{l}{sinπx,x≥0}\\{{2}^{x},x<0}\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點的個數(shù)為( 。
A.9B.10C.11D.12

分析 由已知可得函數(shù)y=f(x)是周期為2的周期函數(shù),結(jié)合當(dāng)x∈[-1,1]時,f(x)=|x|,作出在區(qū)間[-5,5]上f(x)與g(x)的圖象,數(shù)形結(jié)合可得函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點的個數(shù).

解答 解:由f(x+2)=f(x),
∴f(x)是以2為周期的周期函數(shù),又當(dāng)x∈[-1,1]時,f(x)=|x|,
∴作出函數(shù)y=f(x)與y=g(x)的圖象如圖:

由圖可知,函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點的個數(shù)為11個.
故選:C.

點評 本題考查根的存在性與根的個數(shù)判斷,考查了數(shù)形結(jié)合的解題思想方法與數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=$\sqrt{-{x}^{2}+2x+3}$的定義域為(  )
A.[-1,3]B.[-3,1]C.(-∞,-3]∪[1,+∞]D.(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若三條直線l1:ax+2y+6=0,l2:x+y-4=0,l3:2x-y+1=0相交于同一點,則實數(shù)a=(  )
A.-12B.-10C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.盒中裝有數(shù)字1,2,3,4,5的小球各取2個,從袋中一次性任取3個小球,每個小球被取出的可能性都相等.
(1)求取出的3個小球上的數(shù)字互不相同的概率;
(2)用ξ表示取出的三個小球上的最小數(shù)字,求隨機變量ξ的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.有一批產(chǎn)品,其中有12件正品和4件次品,從中有放回地任取4次,若X表示取到次品的次數(shù),則D(X)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點P是雙曲線$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1上的動點,F(xiàn)1,F(xiàn)2為該雙曲線的左右焦點,O為坐標原點,則$\frac{|P{F}_{1}|+|P{F}_{2}|}{|OP|}$的最大值為(  )
A.2$\sqrt{2}$B.2C.$\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$x2+alnx(a∈R).
(Ⅰ)若a=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1時,f(x)>lnx恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知圓C經(jīng)過點A(0,2),B(2,-2),且圓心C在直線x-y+1=0上,則圓C的標準方程為(x+3)2+(y+2)2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤4}\\{y≥0}\\{-2≤x-2y≤2}\end{array}\right.$,則z=4x-2y的最大值是12.

查看答案和解析>>

同步練習(xí)冊答案