【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)C的普通方程和的直角坐標(biāo)方程;

(2)C上的點到距離的最大值.

【答案】(1)C的普通方程為的直角坐標(biāo)方程為(2)3

【解析】

1)把曲線C的參數(shù)方程平方相加可得普通方程,把xρcosθ,yρsinθ代入ρcosθρsinθ+40,可得直線l的直角坐標(biāo)方程;

2)設(shè)出橢圓上動點的坐標(biāo)(參數(shù)形式),再由點到直線的距離公式寫出距離,利用三角函數(shù)求最值.

1)由t為參數(shù)),因為,且,

所以C的普通方程為

ρcosθρsinθ+40,得xy+40

即直線l的直角坐標(biāo)方程為得xy+40;

2)由(1)可設(shè)C的參數(shù)方程為(為參數(shù),)

P到直線得xy+40的距離為:

C上的點到的距離為

當(dāng)時,取得最大值6,故C上的點到距離的最大值為3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)在精準(zhǔn)扶貧行動中,決定幫助一貧困山區(qū)將水果運出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內(nèi)把180噸水果運輸?shù)交疖囌,則通過合理調(diào)配車輛,運送這批水果的費用最少為(

A.2400B.2560C.2816D.4576

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將數(shù)列的前項分成兩部分,且兩部分的項數(shù)分別是,若兩部分和相等,則稱數(shù)列的前項的和能夠進行等和分割.

1)若,試寫出數(shù)列的前項和所有等和分割;

2)求證:等差數(shù)列的前項的和能夠進行等和分割;

3)若數(shù)列的通項公式為:,且數(shù)列的前項的和能夠進行等和分割,求所有滿足條件的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)

(1)若,求出函數(shù)在區(qū)間上的最大值.

(2)若,求出函數(shù)的單調(diào)區(qū)間(不必證明)

(3)若存在,使得關(guān)于方程有三個不相等的實數(shù)根,求出實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)C的普通方程和的直角坐標(biāo)方程;

(2)C上的點到距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的值域;

2)當(dāng)時,求的最小值;

3)是否存在實數(shù)、,同時滿足下列條件:① ;② 當(dāng)的定義域為時,其值域為.若存在,求出、的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列六個命題:

1)若,則函數(shù)的圖像關(guān)于直線對稱.

2的圖像關(guān)于直線對稱.

3的反函數(shù)與是相同的函數(shù).

4無最大值也無最小值.

5的最小正周期為.

6有對稱軸兩條,對稱中心有三個.

則正確命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)在區(qū)間上的值域.

(2)對于任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案