【題目】在棱長為1的正方體ABCD﹣A'B'C'D'中,E是AA'的中點,P是三角形BDC'內(nèi)的動點,EP⊥BC',則P的軌跡長為( )
A.
B.
C.
D.
【答案】D
【解析】解:在棱長為1的正方體ABCD﹣A'B'C'D'中,E是AA'的中點,取BD的中點O,連接EO,因為A′C⊥平面BDC',可知EO⊥BC',則O就是P軌跡上的一個點,作OF⊥BC',于F,可得BC'⊥平面EFO,所以P在OF上,OF的長就是P的軌跡長. 因為正方體的棱長為1,所以BD= ,則OF= = .
故選:D.
【考點精析】本題主要考查了直線與平面垂直的判定的相關知識點,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某零售店近5個月的銷售額和利潤額資料如下表:
商店名稱 | |||||
銷售額/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關關系;
(2)用最小二乘法計算利潤額關于銷售額的回歸直線方程;
(3)當銷售額為4千萬元時,利用(2)的結論估計該零售店的利潤額(百萬元).
[參考公式:,]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓:.
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知,圓與x軸相交于兩點(點在點的左側).過點任作一條直線與圓:相交于兩點A,B.問:是否存在實數(shù)a,使得=?若存在,求出實數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 (φ為參數(shù)),以原點為極點,x軸的非負半軸為極軸建立極坐標系. (Ⅰ)求曲線C的極坐標方程;
(Ⅱ)已知傾斜角為135°且過點P(1,2)的直線l與曲線C交于M,N兩點,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】規(guī)定:投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀.根據(jù)以往經(jīng)驗某選手投擲一次命中8環(huán)以上的概率為 .現(xiàn)采用計算機做模擬實驗來估計該選手獲得優(yōu)秀的概率:用計算機產(chǎn)生0到9之間的隨機整數(shù),用0,1表示該次投擲未在 8 環(huán)以上,用2,3,4,5,6,7,8,9表示該次投擲在 8 環(huán)以上,經(jīng)隨機模擬試驗產(chǎn)生了如下 20 組隨機數(shù): 907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
據(jù)此估計,該選手投擲 1 輪,可以拿到優(yōu)秀的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱柱ABC﹣A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1C⊥AC1 .
(Ⅰ)求證:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中點,∠ADB是二面角A﹣CC1﹣B的平面角,求直線AC1與平面ABC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家秦九韶(約公元1202﹣1261年)給出了求n(n∈N*)次多項式anxn+an﹣1xn﹣1+…+a1x+a0 , 當x=x0時的值的一種簡捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項式改寫為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后進行求值.運行如圖所示的程序框圖,能求得多項式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有5名男生、2名女生站成一排照相,
(1)兩女生要在兩端,有多少種不同的站法?
(2)兩名女生不相鄰,有多少種不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少種不同的站法?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com