閱讀下表后,請應(yīng)用類比的思想,得出橢圓中的結(jié)論:
              圓          橢圓

平面上到動點(diǎn)P到定點(diǎn)O的距離等于定長的點(diǎn)的軌跡 平面上的動點(diǎn)P到兩定點(diǎn)F1,F(xiàn)2的距離之和等于定值2a的點(diǎn)的軌跡(2a>|F1F2|)
結(jié)
如圖,AB是圓O的直徑,直線AC,BD是圓O過A,B的切線,P是圓O上任意一點(diǎn),
CD是過P的切線,則有“PO2=PC•PD”
橢圓的長軸為AB,O是橢圓的中心,F(xiàn)1,F(xiàn)2是橢圓的焦點(diǎn),直線AC,BD是橢圓過A,B的切線,P是橢圓上任意一點(diǎn),CD是過P的切線,則有
 

考點(diǎn):類比推理
專題:簡易邏輯,推理和證明
分析:類比圓的半徑和橢圓的焦半徑,不難發(fā)現(xiàn)關(guān)系:OP2和PF1•PF2具有等價(jià)性.
解答: 解:由題意可知:圓的半徑和橢圓的焦半徑,是類比對象,
不難發(fā)現(xiàn)關(guān)系:OP2和PF1•PF2具有等價(jià)性.
在圓中有PO2=PC•PD.則橢圓中PF1•PF2=PC•PD
故答案為:PF1•PF2=PC•PD
點(diǎn)評:本題主要考查了類比推理,關(guān)鍵是需要找到類比對象,本題是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知:a,b,x均是正數(shù),且a<b,求證:
a+x
b+x
a
b
;
(2)證明:△ABC中,
sinA
sinB+sinC
+
sinB
sinC+sinA
+
sinC
sinA+sinB
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn=2n+1-2,數(shù)列{bn}是首項(xiàng)為a1,公差為d(d≠0)的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人在10天中每天加工的零件的個(gè)數(shù)用莖葉圖表示如圖.中間一列的數(shù)字表示零件個(gè)數(shù)的十位數(shù),兩邊的數(shù)字零件個(gè)數(shù)的個(gè)位數(shù),則這10天中甲、乙兩人日加工零件的平均水平
 
更高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,AB=3,BC=4,CA=5,則
CB
CA
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若三棱錐的三條側(cè)棱兩兩垂直,且側(cè)棱長均為2,則其外接球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x-2y)7的展開式中第3項(xiàng)的二項(xiàng)式系數(shù)是
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα=2,則sin2α+2sinαcosα+3cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-3x,對任意的x∈[
1
3
,+∞)有f(x)≤m恒成立,求實(shí)數(shù)m的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案