如圖,在直角梯形ABCD中,AB⊥AD,AD=DC=1,AB=3,動點P在△BCD內運動(含邊界),設數(shù)學公式,則α+β的取值范圍是________.


分析:建立平面直角坐標系,將α+β的取值范圍的求解,轉化為利用線性規(guī)劃的方法解決即可.
解答:建立如圖所示的平面直角坐標系,設P(x,y),

(x,y)=α•(3,0)+β•(0,1),∴
∴z=,即z表示直線的縱截距
∵B(3,0),D((0,1),C(1,1)
∴DB的方程為,BC的方程為x+2y-3=0
根據(jù)圖象,可得z=在BD邊取得最小值1,在點C處取得最大值
∴α+β的取值范圍是
故答案為:
點評:本題考查取值范圍的確定,考查數(shù)形結合的數(shù)學思想,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求證:平面SAB⊥平面SAD;
(Ⅱ)設SB的中點為M,且DM⊥MC,試求出四棱錐S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.點E、F分別是PC、BD的中點,現(xiàn)將△PDC沿CD折起,使PD⊥平面ABCD,
(1)求證:EF∥平面PAD;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,動點P在BCD內運動(含邊界),設
AP
AD
AB
,則α+β的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P為CD的中點,則
PA
PB
的值為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分別為線段CD、AB上的點,且EF∥AD.將梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD與平面ADEF所成角正切值為
2
2

(Ⅰ)求證:BC⊥平面BDE;
(Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

查看答案和解析>>

同步練習冊答案