定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應關系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②A是直角坐標系平面內所有點形成的集合,B是復數(shù)集,則A和B 不具有相同的勢;
③若A={
a
,
b
},其中
a
,
b
是不共線向量,B={
c
|
c
a
b
共面的任意向量},則A和B不可能具有相同的勢;
④若區(qū)間A=(-1,1),B=(-∞,+∞),則A和B具有相同的勢.
其中真命題為
①③④
①③④
分析:根據(jù)奇數(shù)與偶數(shù)的定義,給出一個對應法則可驗證①的正確性;
對②,根據(jù)復數(shù)的幾何意義,可判斷能否形成一一映射,來判斷②是否正確;
根據(jù)平面向量定理可判斷③是否正確;
對④,給出對應法則y=tan
π
2
x,可驗證④的正確性.
解答:解:根據(jù)一一映射的定義,集合A={奇數(shù)}→B={偶數(shù)},不妨給出對應法則加1.則A→B是一一映射,故①正確;
對②設Z點的坐標(a,b),則Z點對應復數(shù)a+bi,a、b∈R,復合一一映射的定義,故②不正確;
對③∵A中的不同元素可以有相同的象,∴A和B不具有相同的勢,故③正確;
對④,給出對應法則y=tan
π
2
x,對于A,B兩集合可形成f:A→B的一一映射,則A、B具有相同的勢;∴④正確.
故答案是①③④
點評:本題借助考查命題的真假判斷,考查一一映射的定義.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應關系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②有兩個同心圓,A是小圓上所有點形成的集合,B是大圓上所有點形成的集合,則A和B 不具有相同的勢;
③A是B的真子集,則A和B不可能具有相同的勢;
④若A和B具有相同的勢,B和C具有相同的勢,則A和C具有相同的勢
其中真命題為
①④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應關系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②有兩個同心圓,A是小圓上所有點形成的集合,B是大圓上所有點形成的集合,則A和B 不具有相同的勢;
③A是B的真子集,則A和B不可能具有相同的勢;
④若A和B具有相同的勢,B和C具有相同的勢,則A和C具有相同的勢
其中真命題為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省南充高級中學高三(下)最后一次月考數(shù)學試卷(理科)(解析版) 題型:填空題

定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應關系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②有兩個同心圓,A是小圓上所有點形成的集合,B是大圓上所有點形成的集合,則A和B 不具有相同的勢;
③A是B的真子集,則A和B不可能具有相同的勢;
④若A和B具有相同的勢,B和C具有相同的勢,則A和C具有相同的勢
其中真命題為   

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省南充市高中高三最后一次月考數(shù)學試卷(文科)(解析版) 題型:填空題

定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應關系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②有兩個同心圓,A是小圓上所有點形成的集合,B是大圓上所有點形成的集合,則A和B 不具有相同的勢;
③A是B的真子集,則A和B不可能具有相同的勢;
④若A和B具有相同的勢,B和C具有相同的勢,則A和C具有相同的勢
其中真命題為   

查看答案和解析>>

同步練習冊答案