【題目】在長方體ABCD﹣A1B1C1D1中,AB=2 ,AD=2 ,AA1=2,BC和A1C1所成的角=度 AA1和BC1所成的角=度.

【答案】45;60
【解析】解:∵在長方體ABCD﹣A1B1C1D1中, ∴AC∥A1C1 ,
∴∠ACB是BC和A1C1所成的角,
∵AB=2 ,AD=2 ,
∴∠ACB=45°,
∴BC和A1C1所成的角為45度;
∵BC1∥AD1 ,
∴∠A1AD1是AA1和BC1所成的角,
∵AB=2 ,AD=2 ,AA1=2,
∴tan∠A1AD1= =
∴∠A1AD1=60°.
∴AA1和BC1所成的角為60度.
所以答案是:45,60.

【考點精析】掌握異面直線及其所成的角是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD中,
(1)點E是AB的中點,點F是BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′.求證:A′D⊥EF.
(2)當BE=BF=BC時,求三棱錐A′﹣EFD體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四組中,f(x)與g(x)表示同一函數(shù)的是(
A.f(x)=x,
B.f(x)=x,
C.f(x)=x2 ,
D.f(x)=|x|,g(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別過橢圓E: =1(a>b>0)左、右焦點F1、F2的動直線l1、l2相交于P點,與橢圓E分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率分別為k1、k2、k3、k4 , 且滿足k1+k2=k3+k4 , 已知當l1與x軸重合時,|AB|=2 ,|CD|=
(1)求橢圓E的方程;
(2)是否存在定點M,N,使得|PM|+|PN|為定值?若存在,求出M、N點坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有若干(大于20)件某種自然生長的中藥材,從中隨機抽取20件,其重量都精確到克,規(guī)定每件中藥材重量不小于15克為優(yōu)質品.如圖所示的程序框圖表示統(tǒng)計20個樣本中的優(yōu)質品數(shù),其中表示每件藥材的重量,則圖中①,②兩處依次應該填的整數(shù)分別是____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果二面角α﹣L﹣β的大小是60°,線段AB在α內,AB與L所成的角為60°,則AB與平面β所成角的正切值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xln(x+ (a>0)為偶函數(shù).
(1)求a的值;
(2)求g(x)=ax2+2x+1在區(qū)間[﹣6,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的污水處理程序如下:原始污水必先經過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為.經化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放.

某廠現(xiàn)有個標準水量的A級水池,分別取樣、檢測. 多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.

現(xiàn)有以下四種方案,

方案一:逐個化驗;

方案二:平均分成兩組化驗;

方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;

方案四:混在一起化驗.

化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.

(Ⅰ) 若,求個A級水樣本混合化驗結果不達標的概率;

(Ⅱ) 若,現(xiàn)有個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?

(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求的取值范圍.

查看答案和解析>>

同步練習冊答案