【題目】現(xiàn)有若干(大于20)件某種自然生長的中藥材,從中隨機抽取20件,其重量都精確到克,規(guī)定每件中藥材重量不小于15克為優(yōu)質(zhì)品.如圖所示的程序框圖表示統(tǒng)計20個樣本中的優(yōu)質(zhì)品數(shù),其中表示每件藥材的重量,則圖中①,②兩處依次應(yīng)該填的整數(shù)分別是____________.
【答案】14,19
【解析】由題意知, 表示每件藥材的重量, 抽取的中藥材重量不小于15克,即克為優(yōu)質(zhì)品,又隨機抽取20件,故當(dāng)時,輸出k值,故填14,19.
點睛:本題考查學(xué)生的是框圖的循環(huán)結(jié)構(gòu).解決本題的關(guān)鍵是將已知數(shù)據(jù)代入框圖中,通過循環(huán)計算得出根據(jù)框圖得出,直到符合條件輸出.一般解決框圖問題時,我們要先根據(jù)已知判斷程序的功能,構(gòu)造出相應(yīng)的數(shù)學(xué)模型,將程序問題轉(zhuǎn)化為一個數(shù)學(xué)問題,得出數(shù)學(xué)關(guān)系式,進(jìn)而求出我們所要的答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點,已知PA⊥AC,PA=6,BC=8,DF=5.求證:
(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC=2.
(1)求證:平面AEF⊥平面PBC;
(2)求三棱錐P﹣AEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=bax(a>0,且a≠1,b∈R)的圖象經(jīng)過點A(1,6),B(3,24).
(1)設(shè)g(x)= ﹣ ,確定函數(shù)g(x)的奇偶性;
(2)若對任意x∈(﹣∞,1],不等式( )x≥2m+1恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.
(1)求證:平面平面;
(2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,AB=2 ,AD=2 ,AA1=2,BC和A1C1所成的角=度 AA1和BC1所成的角=度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是矩形,PA⊥底面ABCD,PA=AD,點E、F分別為棱AB、PD的中點. (Ⅰ)求證:AF∥平面PCE;
(Ⅱ)AD與平面PCD所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)購是當(dāng)前民眾購物的新方式,某公司為改進(jìn)營銷方式,隨機調(diào)查了100名市民,統(tǒng)計其周平均網(wǎng)購的次數(shù),并整理得到如下的頻數(shù)分布直方圖.這100名市民中,年齡不超過40歲的有65人將所抽樣本中周平均網(wǎng)購次數(shù)不小于4次的市民稱為網(wǎng)購迷,且已知其中有5名市民的年齡超過40歲.
(1)根據(jù)已知條件完成下面的列聯(lián)表,能否在犯錯誤的概率不超過0.10的前提下認(rèn)為網(wǎng)購迷與年齡不超過40歲有關(guān)?
網(wǎng)購迷 | 非網(wǎng)購迷 | 合計 | |
年齡不超過40歲 | |||
年齡超過40歲 | |||
合計 |
(2)若從網(wǎng)購迷中任意選取2名,求其中年齡超過40歲的市民人數(shù)的分布列與期望.
附: ;
0.15 | 0.10 | 0.05 | 0.01 | |
2.072 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(﹣1,1),則函數(shù)g(x)=f( )+f(x﹣1)的定義域為( )
A.(﹣2,0)
B.(﹣2,2)
C.(0,2)
D.(﹣ ,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com