的導(dǎo)函數(shù),滿足,若則下列正確的是(   )
A.B.C.D.
A

試題分析:∵f(x)是定義在R上的可導(dǎo)函數(shù),∴可以令f(x)=,∴f′(x)=,∵f′(x)>f(x),ex>0,∴f′(x)>0,∴f(x)為增函數(shù),∵正數(shù)a>0,∴f(a)>f(0),∴,故選A.
點(diǎn)評(píng):此類問題常常要根據(jù)已知選項(xiàng)構(gòu)造特殊函數(shù),然后利用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,從而利用單調(diào)性比較大小,是一道好題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知的圖像在點(diǎn)處的切線與直線平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等于
A.9B.11C.14D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)在定義域R內(nèi)是增函數(shù),且f(x)<0,則g(x)=x2 f(x)的單調(diào)情況一定是( 。
A.在(-∞,0)上遞增B.在(-∞,0)上遞減
C.在R上遞減D.在R上遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,且,則=(      )
A.-4B.4C.8D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線f(x)=x㏑x在點(diǎn)x=1處的切線方程是( )
A.y=2x+2B.y=2x-2C.y=x-1D.y=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)處的切線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),當(dāng)時(shí),恒成立,則實(shí)數(shù)的取值范圍為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

處可導(dǎo),為常數(shù),則( )
A.B.C.D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案