【題目】已知雙曲線C:-=1(a>0,b>0)與橢圓+=1的焦點(diǎn)重合,離心率互為倒數(shù),設(shè)F1、F2分別為雙曲線C的左、右焦點(diǎn),P為右支上任意一點(diǎn),則的最小值為________.
【答案】8
【解析】
求出橢圓的離心率和焦點(diǎn),從而得雙曲線的離心率,雙曲線的實(shí)半軸長,可得,由雙曲線的定義得PF1=PF2+2,這樣就可表示為的函數(shù),于是可利用基本不等式求得最小值
設(shè)橢圓的長半軸長為a1,短半軸長為b1,半焦距為c,
則c===2,
故橢圓的離心率e1==,
從而雙曲線的離心率,可得a=1,
根據(jù)雙曲線的定義有PF1-PF2=2a,即PF1=PF2+2,
故===PF2++4,
由雙曲線的范圍可得PF2≥c-a=1,
根據(jù)基本不等式可得PF2++4≥2+4=8,
當(dāng)且僅當(dāng)PF2=,
即PF2=2時(shí)取“=”,
所以的最小值為8.
故答案為:8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)的圖像過點(diǎn)和,且對(duì)于任意實(shí)數(shù),不等式恒成立
(1)求的表達(dá)式;
(2)設(shè),若在上是增函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線.圓與軸交于兩點(diǎn),是圓上不同于的一動(dòng)點(diǎn),所在直線分別與交于.
(1)當(dāng)時(shí),求以為直徑的圓的方程;
(2)證明:以為直徑的圓截軸所得弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,,,過點(diǎn)作的垂線,交的延長線于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點(diǎn),為的中點(diǎn),且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
(1)求曲線在點(diǎn)處的切線方程;(2)過點(diǎn)作直線與曲線交于兩點(diǎn),求線段的中點(diǎn)的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為2的正方形,側(cè)面底面,且,,分別為棱,的中點(diǎn).
(1)求證:;
(2)求異面直線與所成角的余弦值;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線 .
(1)判斷直線與曲線的位置關(guān)系;
(2)若是曲線上的動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,為多面體,平面與平面垂直,點(diǎn)在線段上, 都是正三角形.
(1)證明:直線∥面;
(2)在線段上是否存在一點(diǎn),使得二面角的余弦值是,若不存在請(qǐng)說明理由,若存在請(qǐng)求出點(diǎn)所在的位置。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com