【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求k的值及f(x)的表達(dá)式。
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
【答案】, 因此.,當(dāng)隔熱層修建厚時(shí), 總費(fèi)用達(dá)到最小值為70萬元。
【解析】解:(Ⅰ)設(shè)隔熱層厚度為,由題設(shè),每年能源消耗費(fèi)用為.
再由,得, 因此.
而建造費(fèi)用為
最后得隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和為
(Ⅱ),令,即.
解得 ,(舍去).
當(dāng) 時(shí),, 當(dāng)時(shí), , 故是 的最小值點(diǎn),對(duì)應(yīng)的最小值為。
當(dāng)隔熱層修建厚時(shí), 總費(fèi)用達(dá)到最小值為70萬元。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為 ,求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列中, , .
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣ .
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 在 方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )
(參考數(shù)據(jù):)
A. 12 B. 24 C. 48 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】建設(shè)生態(tài)文明,是關(guān)系人民福祉,關(guān)乎民族未來的長遠(yuǎn)大計(jì).某市通宵營業(yè)的大型商場(chǎng),為響應(yīng)節(jié)能減排的號(hào)召,在氣溫超過時(shí),才開放中央空調(diào)降溫,否則關(guān)閉中央空調(diào).如圖是該市夏季一天的氣溫(單位:)隨時(shí)間(,單位:小時(shí))的大致變化曲線,若該曲線近似的滿足函數(shù)關(guān)系.
(1)求函數(shù)的表達(dá)式;
(2)請(qǐng)根據(jù)(1)的結(jié)論,判斷該商場(chǎng)的中央空調(diào)應(yīng)在本天內(nèi)何時(shí)開啟?何時(shí)關(guān)閉?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,點(diǎn)B是其下頂點(diǎn),過點(diǎn)B的直線交橢圓C于另一點(diǎn)A(A點(diǎn)在軸下方),且線段AB的中點(diǎn)E在直線上.
(1)求直線AB的方程;
(2)若點(diǎn)P為橢圓C上異于A、B的動(dòng)點(diǎn),且直線AP,BP分別交直線于點(diǎn)M、N,證明:OM·ON為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,cosB=.
(Ⅰ)若c=2a,求的值;
(Ⅱ)若C-B=,求sinA的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com