【題目】已知:以點(diǎn)()為圓心的圓與軸交

于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).

(1)求證:△OAB的面積為定值;

(2)設(shè)直線與圓C交于點(diǎn)M, N,若OM = ON,求圓C的方程.

【答案】1)根據(jù)條件寫成圓的方程,求出點(diǎn)A,B的坐標(biāo),進(jìn)而寫出△OAB的面積即可得證;

2

【解析】試題分析:(1)設(shè)出圓C的方程,求得A、B的坐標(biāo),再根據(jù)S△AOB=OAOB,計(jì)算可得結(jié)論.

(2)設(shè)MN的中點(diǎn)為H,則CHMN,根據(jù)C、H、O三點(diǎn)共線,KMN=﹣2,由直線OC的斜率,求得t的值,可得所求的圓C的方程.

試題解析:

(1),

設(shè)圓的方程是

,得;令,得

,即:的面積為定值.

(2) 垂直平分線段

,直線的方程是

,解得:

當(dāng)時(shí),圓心的坐標(biāo)為,此時(shí)到直線的距離,圓與直線相交于兩點(diǎn).

當(dāng)時(shí),圓心的坐標(biāo)為,此時(shí)到直線的距離與直線不相交,不符合題意舍去.

的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),求的單調(diào)區(qū)間;

當(dāng)時(shí),的圖象恒在的圖象上方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),設(shè)的兩個(gè)極值點(diǎn)恰為的零點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某購物中心為了了解顧客使用新推出的某購物卡的顧客的年齡分布情況,隨機(jī)調(diào)查了位到購物中心購物的顧客年齡,并整理后畫出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.

(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;

(2) 擬利用分層抽樣從年齡在的顧客中選取人召開一個(gè)座談會,現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中,,,

(1)設(shè),證明:數(shù)列是等差數(shù)列;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù),其圖象關(guān)于點(diǎn)對稱,且在區(qū)間上是單調(diào)函數(shù),則的值是( )

A. B. C. D. 無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位每天的用電量(度)與當(dāng)天最高氣溫)之間具有線性相關(guān)關(guān)系,下表是該單位隨機(jī)統(tǒng)計(jì)4天的用電量與當(dāng)天最高氣溫的數(shù)據(jù).

最高氣溫(℃)

26

29

31

34

用電量 ()

22

26

34

38

)根據(jù)表中數(shù)據(jù),求出回歸直線的方程(其中);

)試預(yù)測某天最高氣溫為33℃時(shí),該單位當(dāng)天的用電量(精確到1度).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ; :關(guān)于的方程的兩根之差的絕對值大于3.如果為真命題,為假命題,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案