雙曲線16x2-9y2=144的離心率e=(  )
A、
25
16
B、
25
9
C、
5
4
D、
5
3
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由雙曲線16x2-9y2=144化為
x2
9
-
y2
16
=1
,可得a2=9,b2=16,a=3,c=
a2+b2
=5,即可得出.
解答: 解:雙曲線16x2-9y2=144化為
x2
9
-
y2
16
=1
,
∴a2=9,b2=16,∴a=3,c=
a2+b2
=5,
離心率e=
c
a
=
5
3

故選:D.
點(diǎn)評(píng):本題考查了雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)函數(shù)f(x)=cos(sinx)的最小正周期是( 。
A、
x
2
B、π
C、2m
D、4m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求證:平面PAD與平面PAB垂直;
(2)求直線PC與直線AB所成角的余弦值.(請(qǐng)用空間向量知識(shí)求解)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為
2
的正四棱柱,其各頂點(diǎn)均在同一個(gè)球面上,則該球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx+
2a2
x
(a≠0)的圖象上在點(diǎn)(1,f(1))處的切線l的斜率為2-3a,
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求證:對(duì)于定義域內(nèi)的任意一個(gè)x,都有f(x)≥3-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=
b
”是“
a
c
=
b
c
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知2
AB
AC
=
3
|
AB
|•|
AC
|=3
BC
2
,則∠C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在14與
7
8
之間插入n個(gè)數(shù)組成等比數(shù)列,若各項(xiàng)總和為
77
8
,則此數(shù)列的項(xiàng)數(shù)( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列命題不正確的是( 。
A、若m⊥n,m⊥α,n?α,則n∥α
B、若m⊥β,α⊥β,則m∥α或m?α
C、若m⊥n,m⊥α,n⊥β,則α⊥β
D、若m∥α,α⊥β,則m⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案