已知底面邊長為1,側(cè)棱長為
2
的正四棱柱,其各頂點均在同一個球面上,則該球的體積為
 
考點:球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:由正四棱柱的底面邊長與側(cè)棱長,可以求出四棱柱的對角線的長,就是外接球的直徑,然后求出球的體積.
解答: 解:因為正四棱柱底面邊長為1,側(cè)棱長為
2

所以它的體對角線的長是:2.
所以球的直徑是:2,半徑為1.
所以這個球的體積是:
3

故答案為:
3
點評:本題考查正四棱柱的外接球的體積.考查空間想象能力與計算能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(2x-
π
3
)的圖象可由函數(shù)y=2sin2x的圖象向
 
移動
 
個單位得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(sinx)=cos19x,則f(cosx)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=5n2+kn-19,且a10=100,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

張大伯出去散步,從家走了20分鐘,到一個離家900米的閱報亭,看了10分鐘報紙后,用了10分鐘返回到家,下面哪個圖形表示張大伯離家時間與距離之間的關(guān)系( 。
A、
B、
C、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動圓M與圓C1:(x+1)2+y2=36內(nèi)切,與圓C2:(x-1)2+y2=4外切,則圓心M的軌跡方程為( 。
A、
x2
16
+
y2
15
=1
B、
y2
16
+
x2
15
=1
C、x2+y2=25
D、x2+y2=38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線16x2-9y2=144的離心率e=( 。
A、
25
16
B、
25
9
C、
5
4
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,若a=2,C=
π
4
,cos
B
2
=
2
5
5
,則△ABC的面積S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某批發(fā)市場對某件商品(成本為5元/件)進行了6天的試銷,得到如下數(shù)據(jù):
單價x(元)8.008.208.408.608.809.00
銷量y(件)908483807568
經(jīng)分析發(fā)現(xiàn)銷量y(件)與單價x(元)具有線性相關(guān)關(guān)系,且回歸直線方程為
?
y
=
?
b
•x+
?
a
(其中,
?
b
=-20
,
?
a
=
.
y
-
?
b
.
x
),那么今后為了獲得最大利潤,該商品的單價應(yīng)定為
 
元.

查看答案和解析>>

同步練習(xí)冊答案