6.函數(shù)y=-2x+x3的單調(diào)遞減區(qū)間是( 。
A.(-∞,-$\frac{\sqrt{6}}{3}$)B.($\frac{\sqrt{6}}{3}$,+∞)C.(-∞,-$\frac{\sqrt{6}}{3}$)∪($\frac{\sqrt{6}}{3}$,+∞)D.(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)

分析 求出導(dǎo)函數(shù),由導(dǎo)函數(shù)小于零,點(diǎn)的原函數(shù)的單調(diào)減區(qū)間.

解答 解:由f(x)=-2x+x3,得f′(x)=-2+3x2
f′(x)<0,可得:-2+3x2<0,解得:x∈(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$)
函數(shù)y=-2x+x3的單調(diào)遞減區(qū)間是:(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$).
故選:D.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若x1滿足x+3x-1=4,x2滿足x+log3(x-1)=4,則x1+x2=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=ax3-x2+x-5在區(qū)間(1,2)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,若sin2A<0,則三角形為( 。
A.鈍角三角形B.銳角三角形C.直角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.四個(gè)事件:①當(dāng)x∈R時(shí),方程x2+1=0無(wú)實(shí)數(shù)解;②若x∈R,且x≠0,則x>$\frac{1}{x}$;③函數(shù)y=$\frac{1}{x}$在其定義域上是增函數(shù);④若a2+b2=0,a,b∈R,則a=b=0,隨機(jī)事件是②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知平面向量$\overrightarrow a=(-1,\;\;2)$,$\overrightarrow b=(2,\;\;m)$,且$\overrightarrow a∥\overrightarrow b$,則$3\overrightarrow a+2\overrightarrow b$=( 。
A.(-1,2)B.(1,2)C.(1,-2)D.(-1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)z=1+i(i是虛數(shù)單位),則$\frac{2}{z}+\overline z$=( 。
A.2-2iB.2+2iC.-3-iD.3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.延川中學(xué)高二文科約有300人,其中特優(yōu)班約有30人,實(shí)驗(yàn)班約有90人,普通班約有180人,想了解高二文科數(shù)學(xué)學(xué)習(xí)情況,現(xiàn)采用分層抽樣抽取容量為30的樣本進(jìn)行考核,那么特優(yōu)班、實(shí)驗(yàn)班、普通班各抽取的人數(shù)分別為( 。
A.6,9,15B.3,9,18C.3,6,11D.3,8,19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.sin43°cos13°-sin47°sin13°=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案