【題目】已知數(shù)列的前項和為,,且,數(shù)列滿足,對任意,都有.

1)求數(shù)列,的通項公式;

2)令若對任意的,不等式恒成立,試求實數(shù)的取值范圍.

【答案】1,.(2

【解析】

1)根據(jù),變形為,用累乘法求解,根據(jù),且,利用等比中項得到數(shù)列是等比數(shù)列,求得通項.

2)用等差數(shù)列的前n項和公式求得,用錯位相減法求得, 再根據(jù)不等式,對任意的恒成立,轉(zhuǎn)化為恒成立,令求其最大值即可.

1)當時,,即.

,

,也滿足上式,故數(shù)列的通項公式.

,且,知數(shù)列是等比數(shù)列,其首項公比均為,

∴數(shù)列的通項公式,

2.

<1>

<2>,

<1>-<2>,得,

,

因為不等式,對任意的恒成立,

,對任意的恒成立,

恒成立.

恒成立,

.

,

因為,所以單調(diào)遞增且大于0,

所以 單調(diào)遞增,

時,,且,故,

所以實數(shù)的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù).

(1)求函數(shù)的極值;

(2)設(shè)函數(shù)若存在實數(shù),使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四面體PABC中,D、EF分別是AB、BC、CA的中點,下列四個結(jié)論不成立的是 (  )

A. BC∥平面PDF B. DF⊥平面PAE

C. 平面PDF⊥平面PAE D. 平面PDE⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下給出五個命題,其中真命題的序號為______

①函數(shù)在區(qū)間上存在一個零點,則的取值范圍是;

②“任意菱形的對角線一定相等”的否定是“菱形的對角線一定不相等”;

,;

④若,則;

⑤“”是“成等比數(shù)列”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線的焦點作直線交拋物線于,兩點,若,則的值為( )

A. 10 B. 8 C. 6 D. 4

【答案】B

【解析】

根據(jù)過拋物線焦點的弦長公式,利用題目所給已知條件,求得弦長.

根據(jù)過拋物線焦點的弦長公式有.故選B.

【點睛】

本小題主要考查過拋物線焦點的弦長公式,即.要注意只有過拋物線焦點的弦長才可以使用.屬于基礎(chǔ)題.

型】單選題
結(jié)束】
10

【題目】已知橢圓: 的右頂點、上頂點分別為、,坐標原點到直線的距離為,且,則橢圓的方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1,求曲線在點處的切線方程

2,求證:有且僅有兩個零點;

3為整數(shù),且當,恒成立,的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的中心在原點,焦點為,且離心率.

(1)求雙曲線的方程;

(2)求以點為中點的弦所在的直線方程.

【答案】(1);(2).

【解析】

1)根據(jù)焦點坐標求得,根據(jù)離心率及求得的值,進而求得雙曲線的標準方程.2)設(shè)出兩點的坐標,利用點差法求得弦所在直線的斜率,再由點斜式求得弦所在的直線方程.

(1) 由題可得,∴,,

所以雙曲線方程 .

(2)設(shè)弦的兩端點分別為,,

則由點差法有: , 上下式相減有:

又因為為中點,所以,,

,所以由直線的點斜式可得,

即直線的方程為.

經(jīng)檢驗滿足題意.

【點睛】

本小題主要考查雙曲線標準方程的求法,考查利用點差法求解有關(guān)弦的中點有關(guān)的問題,屬于中檔題.

型】解答
結(jié)束】
19

【題目】某投資公司計劃投資兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為.(注:利潤與投資金額單位:萬元)

(1)該公司已有100萬元資金,并全部投入,兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把,兩種產(chǎn)品利潤總和表示為的函數(shù),并寫出定義域;

(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內(nèi)動點到兩定點的距離之和為4.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)已知直線的傾斜角均為,直線過坐標原點且與曲線相交于, 兩點,直線過點且與曲線是交于, 兩點,求證:對任意, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是__________。

查看答案和解析>>

同步練習冊答案