某校高二年紀(jì)在依次數(shù)學(xué)必修模塊考試后隨機(jī)抽取40名學(xué)生的成績(jī),按成績(jī)共分為五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100),得到的頻率直方圖如圖所示,同時(shí)規(guī)定成績(jī)?cè)?0分以上的記為A級(jí),成績(jī)小于90分的記為B級(jí).
(1)如果用分層抽樣的方法從成績(jī)?yōu)锳和B的學(xué)生中共選出10人,求成績(jī)?yōu)锳和B的學(xué)生各選出幾人.
(2)已知a是在(1)中選出的成績(jī)?yōu)锽的學(xué)生中的一個(gè),若從選出的成績(jī)?yōu)锽的學(xué)生中選出2人參加某問卷調(diào)查,求a被選中的概率.
考點(diǎn):離散型隨機(jī)變量的期望與方差,分層抽樣方法
專題:概率與統(tǒng)計(jì)
分析:(Ⅰ)由題意求出成績(jī)?yōu)锳級(jí)的學(xué)生人數(shù)是12人,成績(jī)?yōu)锽級(jí)的學(xué)生人數(shù)是28人,因?yàn)榉謱映闃拥某槿”壤秊?span id="xxnxhbv" class="MathJye">
10
40
=
1
4
,由此能求出成績(jī)?yōu)锳和B的學(xué)生各選出幾人.
(Ⅱ)從這7人中選取2人的基本事件有21個(gè),其中含a的基本事件有6個(gè),由此能求出學(xué)生a被選中的概率.
解答: 解:(Ⅰ)依題意,成績(jī)?yōu)锳級(jí)的學(xué)生人數(shù)是40×(0.04+0.02)×5=12人,
成績(jī)?yōu)锽級(jí)的學(xué)生人數(shù)是40-12=28人,…(2分)
因?yàn)榉謱映闃拥某槿”壤秊?span id="bhtbpn3" class="MathJye">
10
40
=
1
4

故成績(jī)?yōu)锳級(jí)的學(xué)生抽取出12×
1
4
=3

成績(jī)?yōu)锽級(jí)的學(xué)生抽取出28×
1
4
=7
人.…(5分)
(Ⅱ)將(Ⅰ)中選取的成績(jī)?yōu)锽級(jí)的學(xué)生記作:a,b,c,d,e,f,g.
則從這7人中選取2人的基本事件有:
ab,ac,ad,ae,af,ag,bc,bd,be,bf,
bg,cd,ce,cf,cg,de,df,dg,ef,eg,fg,共21個(gè),…(8分)
其中含a的基本事件有:ab,ac,ad,ae,af,ag,共6個(gè).…(10分)
記事件A=“學(xué)生a被選中”,
則其概率P(A)=
6
21
=
2
7
.…(12分)
點(diǎn)評(píng):本題考查樣本中A,B各有多少人的求法,考查概率的求法,解題時(shí)要認(rèn)真審題,注意分層抽樣的性質(zhì)的合理運(yùn)用,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,A={x|x<3},B={x|x>1},求:
(1)A∩B    (2)A∪B   (3)CRA,CRB  (4)(CRA)∩(CRB)  (5)CR(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的方程是
x2
a2
+
y2
b2
=1,(a>b>0),傾斜角為45°的直線l過橢圓的右焦點(diǎn)且交橢圓于A(x1,y1),B(x2,y2)兩點(diǎn).
(1)若橢圓的左頂點(diǎn)為(-2,0),離心率e=
1
2
,求橢圓C的方程;
(2)設(shè)向量
OP
=λ(
OA
+
OB
)(λ>0),若點(diǎn)P在橢圓C上,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓O的直徑,C,D是弧AB的三等分點(diǎn),M,N是線段AB的三等分點(diǎn),若OA=6,則
MD
NC
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AA1=1,AD=2,E是BC的中點(diǎn)
(1)求證:平面A1AE⊥D1DE平面;
(2)求三棱錐A-D1DE的體積;
(3)求點(diǎn)A1到平面D1DE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)經(jīng)過點(diǎn)(0,1),離心率為
3
2
.直線l與橢圓C交于P、Q兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線OP、PQ、OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍;
(Ⅲ)設(shè)點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為P′(P′與Q不重合),當(dāng)直線l過點(diǎn)(1,0)時(shí),判斷直線P′Q是否與x軸交于一定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABC-A1B1C1是正三棱柱,它的底面邊長(zhǎng)和側(cè)棱長(zhǎng)都是2,D為側(cè)棱CC1的中點(diǎn),E為A1B1的中點(diǎn).
(1)求證:AB⊥DE;
(2)求直線A1B1到平面DAB的距離;
(3)求二面角A-BD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax
(1)若f(x)=2,求f(3x);
(2)y=f(x)的圖象經(jīng)過點(diǎn)(2,4),g(x)是f(x)反函數(shù),求g(x)在[
1
2
,2
]區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在花園小區(qū)內(nèi)有一塊三邊長(zhǎng)分別為3米、4米、5米的三角形綠化帶,有一只小狗在其內(nèi)部玩耍,若不考慮小狗的大小,則在任意指定的某一時(shí)刻,小狗與三角形三個(gè)頂點(diǎn)的距離均超過1米的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案