【題目】已知,直線AM,BM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率的差是,則點(diǎn)M的軌跡C的方程是___________.若點(diǎn)為軌跡C的焦點(diǎn),是直線上的一點(diǎn),是直線與軌跡的一個(gè)交點(diǎn),且,則_____

【答案】

【解析】設(shè)M(x,y),

A(1,),B(﹣1,),直線AM,BM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率的差是

kAM﹣kBM=,

整理,得點(diǎn)M的軌跡C的方程是x2=4y(x≠±1).

∵點(diǎn)F為軌跡C的焦點(diǎn),∴F(0,1),

P是直線l:y=﹣1上的一點(diǎn),Q是直線PF與軌跡C的一個(gè)交點(diǎn),且=3

QMy軸于M點(diǎn),作PNy軸于N點(diǎn),

,MF=Q(,),

∴|QF|=

故答案為:(1). (2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列的各項(xiàng)為正數(shù),且.

(1)求的通項(xiàng)公式;

(2)設(shè),求證數(shù)列的前項(xiàng)和<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)都是正數(shù)的數(shù)列的前項(xiàng)和為,且,數(shù)列滿足.

(1)求數(shù)列、的通項(xiàng)公式;

(2)設(shè)數(shù)列滿足,求和;

(3)是否存在正整數(shù),,,使得,成等差數(shù)列?若存在,求出所有滿足要求的,,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的焦點(diǎn)為F,準(zhǔn)線lx軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N

Ⅰ)若點(diǎn)C的縱坐標(biāo)為2,求;

Ⅱ)若,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,以為頂點(diǎn)的六面體中,均為等邊三角形,,且平面平面,平面,的中點(diǎn),連接.

(Ⅰ)求證:

(Ⅱ)求證:平面;

(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列為單調(diào)遞增數(shù)列,為其前項(xiàng)和,.

(1)求的通項(xiàng)公式;

(2)若為數(shù)列的前項(xiàng)和,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 平面, 平面, 是等邊三角形, ,

的中點(diǎn).

(1)求證: ;

(2)若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,考慮下列命題:①圓上的點(diǎn)到的距離的最小值為;②圓上存在點(diǎn)到點(diǎn)的距離與到直線的距離相等;③已知點(diǎn),在圓上存在一點(diǎn),使得以為直徑的圓與直線相切,其中真命題的個(gè)數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(1)寫(xiě)出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)的坐標(biāo)為,直線與曲線交于,兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案