8.已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且x∈[0,2]時,f(x)=log2(x+1),給出下列結(jié)論:
①f(3)=1;②函數(shù)f(x)在[-6,-2]上是增函數(shù);③函數(shù)f(x)的圖象關(guān)于直線x=1對稱;④若m∈(0,1),則關(guān)于x的方程f(x)-m=0在[-8,16]上的所有根之和為12.
則其中正確的命題為①④.

分析 對于①,利用賦值法,取x=1,得f(3)=-f(1)=1即可判斷;
對于③由f(x-4)=f(-x)得f(x-2)=f(-x-2),即f(x)關(guān)于直線x=-2對稱,
對于②結(jié)合奇函數(shù)在對稱區(qū)間上單調(diào)性相同,可得f(x)在[-2,2]上為增函數(shù),利用函數(shù)f(x)關(guān)于直線x=-2對稱,可得函數(shù)f(x)在[-6,-2]上是減函數(shù);
對于④若m∈(0,1),則關(guān)于x的方程f(x)-m=0在[-8,8]上有4個根,其中兩根的和為-6×2=-12,另兩根的和為2×2=4,故可得結(jié)論.

解答 解:取x=1,得f(1-4)=-f(1)=-log2(1+1)=-1,所以f(3)=-f(1)=1,故①的結(jié)論正確;
∵f(x-4)=-f(x),則f(x+4)=-f(x),即f(x-4)=f(x+4)
定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),則f(x-4)=f(-x),
∴f(x-2)=f(-x-2),
∴函數(shù)f(x)關(guān)于直線x=-2對稱,故③的結(jié)論不正確;
又∵奇函數(shù)f(x),x∈[0,2]時,f(x)=log2(x+1)為增函數(shù),
∴x∈[-2,2]時,函數(shù)為單調(diào)增函數(shù),
∵函數(shù)f(x)關(guān)于直線x=-2對稱,
∴函數(shù)f(x)在[-6,-2]上是減函數(shù),故②的結(jié)論不正確;
若m∈(0,1),則關(guān)于x的方程f(x)-m=0在[-8,8]上有4個根,其中兩根的和為-6×2=-12,另兩根的和為2×2=4,所以所有根之和為-8.故④正確
故答案為:①④.

點評 本題考查函數(shù)的性質(zhì),考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、對稱性等基礎(chǔ)知識,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.集合A={-1,0,1},B={y|y=x2,x∈R},則A∩B=( 。
A.{1}B.{0}C.{0,1}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,矩形ABCD中,AB=2,BC=4,以矩形ABCD的中心為原點,過矩形ABCD的中心平行于BC的直線為x軸,建立直角坐標(biāo)系,
(1)求到直線AD、BC的距離之積為1的動點P的軌跡;
(2)若動點P到線段CD中點N的距離比到直線AB的距離大4,求動點P的軌跡方程,作出動點P的大致軌跡;
(3)若動點P到直線AD、BC的距離之積是到直線AB、CD的距離之積的a(a>0)倍,求動點P的軌跡方程,并指出是怎樣的曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)y=f(x)(x∈R)滿足f(x+1)=-f(x),且x∈[-1,1]時,f(x)=1-x2,函數(shù)g(x)=$\left\{\begin{array}{l}lgx({x>0})\\-\frac{1}{x}({x<0})\end{array}$則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點的個數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,四個頂點所圍成菱形的面積為8$\sqrt{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線L:y=kx+m與橢圓C交于兩個不同點A(x1,x2)和B(x2,y2),O為坐標(biāo)原點,且kOA•kOB=-$\frac{1}{2}$,求y1,y2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線l:y=ax+1-a(a∈R).若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出四條曲線:
①y=-2|x-1|②y=x2③(x-1)2+(y-1)2④x2+3y2=4
其中,可以被稱為直線l的“絕對曲線”的是②③④.(請將符合題意的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某三棱錐的三視圖如圖所示,圖中網(wǎng)格小正方形的邊長為1,則該三棱錐的體積為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.函數(shù)y=|x+1|+|x-2|的最小值為M;
(Ⅰ)求實數(shù)M的值;
(Ⅱ)若不等式$\sqrt{a-x}+\sqrt{4+2x}$≤M,(其中a>0)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}1,x為有理數(shù)\\ 0,x為無理數(shù)\end{array}$,給出下列命題:
①函數(shù)f(x)為偶函數(shù);
②函數(shù)f(x)是周期函數(shù); 
③存在xi(i=1,2,3),使得(xi,f(xi))為頂點的三角形是等邊三角形;
④存在xi(i=1,2,3),使得(xi,f(xi))為頂點的三角形是等腰直角三角形.
其中的真命題是①②③(填上你認(rèn)為正確的所有命題的序號)

查看答案和解析>>

同步練習(xí)冊答案