【題目】已知四棱錐,,在平行四邊形中,,Q為上的點,過的平面分別交,于點E、F,且平面.
(1)證明:;
(2)若,,Q為的中點,與平面所成角的正弦值為,求平面與平面所成銳二面角的余弦值.
【答案】(1)證明見解析;(2)
【解析】
(1)利用線面平行的性質可知,再后再根據條件證明平面,從而證明線線垂直;
(2)如圖,以O為坐標原點,分別以為軸建立空間直角坐標系,利用兩個平面法向量求二面角的余弦值.
(1)證明:連結交于點O,連結.
∵在平行四邊形中,,
∴,且O為、的中點,
∵,∴,
∵,且平面,
∴平面,
∵平面,∴,
∵平面,且平面平面
∴,
∴
(2)由(1)可知平面,故平面平面
∵,且O為的中點,∴
又∵平面平面
∴平面,
∴與平面所成角為
∵與平面所成角的正弦值為,且,∴,
在中,,由勾股定理得:
如圖,以O為坐標原點,分別以為軸建立空間直角坐標系,則:
,
∵Q為的中點,∴
則,
易知,平面的一個法向量為
設平面的法向量為,因為,則:
,即,
令,則:,,故可取平面的一個法向量為
∴
∴平面與平面所成銳二面角的余弦值為
科目:高中數學 來源: 題型:
【題目】某公司訂購了一批樹苗,為了檢測這批樹苗是否合格,從中隨機抽測株樹苗的高度,經數據處理得到如圖1所示的頻率分布直方圖,其中最高的株樹苗的高度的莖葉圖如圖2所示,以這株樹苗的高度的頻率估計整批樹苗高度的概率.
(1)求這批樹苗的高度于米的概率,并求圖中的值;
(2)若從這批樹苗中隨機選取株,記為高度在的樹苗數量,求的分布列和數學期望;
(3)若變量滿足且,則稱變量滿足近似于正態(tài)分布的概率分布,如果這批樹苗的高度近似于正態(tài)分布的概率分布,則認為這批樹苗是合格的,將順利被簽收,否則,公司將拒絕簽收.試問:該批樹苗是否被簽收?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年7月1日到3日,世界新能源汽車大會在海南博鰲召開,大會著眼于全球汽車產業(yè)的轉型升級和生態(tài)環(huán)境的持續(xù)改善.某汽車公司順應時代潮流,最新研發(fā)了一款新能源汽車,并在出廠前對100輛汽車進行了單次最大續(xù)航里程(理論上是指新能源汽車所裝載的燃料或電池所能夠提供給車行駛的最遠里程)的測試.現對測試數據進行分析,得到如圖的頻率分布直方圖.
(1)估計這100輛汽車的單次最大續(xù)航里程的平均值(同一組中的數據用該組區(qū)間的中點值代表);
(2)根據大量的汽車測試數據,可以認為這款汽車的單次最大續(xù)航量程X近似地服從正態(tài)分布,經計算第(1)問中樣本標準差s的近似值為50.用樣本平均數作為的近似值,用樣本標準差s作為的估計值,現任取一輛汽車,求它的單次最大續(xù)航里程恰在250千米到400千米之間的概率;
(3)某汽車銷售公司為推廣此款新能源汽車,現面向意向客戶推出“玩游戲,送大獎”活動,客戶可根據拋擲硬幣的結果,操控微型遙控車在方格圖上行進,若遙控車最終停在“勝利大本營”,則可獲得購車優(yōu)惠券.已知硬幣出現正,反面的概率都是,方格圖上標有第0格、第1格、第2格……第50格.遙控車開始在第0格,客戶每擲一次硬幣,遙控車向前移動一次,若擲出正面,遙控車向前移動一格(從k到),若擲出反面,遙控車向前移動兩格(從k到),直到遙控車移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結束.設遙控車移到第n格的概率為,試證明是等比數列,并解釋此方案能否成功吸引顧客購買該款新能源汽車.
參考數據:若隨機變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護知識,某校開展了“疫情防護”網絡知識競賽活動.現從參加該活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計這100名學生的平均成績(同一組中的數據用該組區(qū)間的中點值為代表);
(2)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯表補充完整,并判斷是否有99%的把握認為“比賽成績是否優(yōu)秀與性別有關”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數據:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關要求,決定在全公司范圍內舉行一次乙肝普查.為此需要抽驗669人的血樣進行化驗,由于人數較多,檢疫部門制定了下列兩種可供選擇的方案.
方案一:將每個人的血分別化驗,這時需要驗669次.
方案二:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血就只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這時該組個人的血總共需要化驗次.
假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.
(1)設方案二中,某組個人中每個人的血化驗次數為,求的分布列.
(2)設,試比較方案二中,分別取2,3,4時,各需化驗的平均總次數;并指出在這三種分組情況下,相比方案一,化驗次數最多可以平均減少多少次?(最后結果四舍五入保留整數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】袋子中有大小、形狀完全相同的四個小球,分別寫有“和”、“諧”、“!、“園”四個字,有放回地從中任意摸出一個小球,直到“和”、“諧”兩個字都摸到就停止摸球,用隨機模擬的方法估計恰好在第三次停止摸球的概率。利用電腦隨機產生到之間取整數值的隨機數,分別用,,,代表“和”、“諧”、“!、“園”這四個字,以每三個隨機數為一組,表示摸球三次的結果,經隨機模擬產生了以下組隨機數:
由此可以估計,恰好第三次就停止摸球的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,隨著“一帶一路”倡議的推進,中國與沿線國家旅游合作越來越密切,中國到“一帶一路”沿線國家的游客人也越來越多,如圖是2013-2018年中國到“一帶一路”沿線國家的游客人次情況,則下列說法正確的是( )
①2013-2018年中國到“一帶一路”沿線國家的游客人次逐年增加
②2013-2018年這6年中,2014年中國到“一帶一路”沿線國家的游客人次增幅最小
③2016-2018年這3年中,中國到“一帶一路”沿線國家的游客人次每年的增幅基本持平
A.①②③B.②③C.①②D.③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸建立極坐標系,已知曲線,直線的參數方程為,(為參數).直線與曲線交于兩點.
(1)寫出曲線的直角坐標方程和直線的普通方程.
(2)設,若成等比數列,求和的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com