【題目】冠狀病毒是一個(gè)大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,某小區(qū)為進(jìn)一步做好新型冠狀病毒肺炎疫情知識(shí)的教育,在小區(qū)內(nèi)開展新型冠狀病毒防疫安全公益課在線學(xué)習(xí),在此之后組織了新型冠狀病毒防疫安全知識(shí)競賽在線活動(dòng).已知進(jìn)入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應(yīng)的名次為第1,2,3,4名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請小區(qū)內(nèi)的所有業(yè)主在比賽結(jié)束前對四位業(yè)主的名次進(jìn)行預(yù)測,若預(yù)測完全正確將會(huì)獲得禮品,現(xiàn)用a,bc,d表示某業(yè)主對甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預(yù)測排列,記X|a1|+|b2|+|c3|+|d4|

1)求該業(yè)主獲得禮品的概率;

2)求X的分布列及數(shù)學(xué)期望.

【答案】1;(2)分布列見解析,

【解析】

1)求得該業(yè)主預(yù)測的結(jié)果的總數(shù),其中預(yù)測完全正確的結(jié)果只有1種,利用古典概型及概率的計(jì)算公式,即可求解;

2)以(a,bc,d)為一個(gè)基本事件,用列舉法逐一寫出每種情況,得到隨機(jī)變量的取值,求得相應(yīng)的概率,即可求得隨機(jī)變量的分布列,利用公式求得數(shù)學(xué)期望.

1)由題意,該業(yè)主預(yù)測的結(jié)果有種可能,預(yù)測完全正確的結(jié)果只有1種,

所以該業(yè)主獲獎(jiǎng)的概率為

2)以(a,bc,d)為一個(gè)基本事件,如下表所示:

a,bc,d

X

a,b,c,d

X

a,b,cd

X

1,2,34

0

2,31,4

4

34,1,2

8

12,43

2

2,3,4,1

6

3,4,2,1

8

1,3,24

2

2,41,3

6

4,1,23

6

1,3,4,2

4

24,3,1

6

4,1,3,2

6

14,2,3

4

3,12,4

4

42,1,3

6

1,4,32

4

3,14,2

6

4,2,3,1

6

2,1,34

2

3,2,14

4

4,31,2

8

214,3

4

3,2,41

6

4,3,2,1

8

所以隨機(jī)變量的所有可能的取值為,

可得

所以隨機(jī)變量X的分布列如表:

0

2

4

6

8

所以數(shù)學(xué)期望EX

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距與短軸長相等,長軸長為,設(shè)過右焦點(diǎn)F傾斜角為的直線交橢圓MAB兩點(diǎn).

(1)求橢圓M的方程;

(2)求證:

(3)設(shè)過右焦點(diǎn)F且與直線AB垂直的直線交橢圓MC、D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐P-ABC底面各棱長均為1、高為,其內(nèi)切球的球心為0,半徑為r.求底面ABC內(nèi)與點(diǎn)O距離不大于2r的點(diǎn)所形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為,過其右焦點(diǎn)F的直線交橢圓CMN兩點(diǎn),交y軸于E點(diǎn).若,

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界衛(wèi)生組織的最新研究報(bào)告顯示,目前中國近視患者人數(shù)多達(dá)6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計(jì)戶外暴露時(shí)間(單位:小時(shí))與近視發(fā)病率的關(guān)系,對某中學(xué)一年級(jí)200名學(xué)生進(jìn)行不記名問卷調(diào)查,得到如下數(shù)據(jù):

每周累積戶外暴露時(shí)間(單位:小時(shí))

不少于28小時(shí)

近視人數(shù)

21

39

37

2

1

不近視人數(shù)

3

37

52

5

3

(1)在每周累計(jì)戶外暴露時(shí)間不少于28小時(shí)的4名學(xué)生中,隨機(jī)抽取2名,求其中恰有一名學(xué)生不近視的概率;

(2)若每周累計(jì)戶外暴露時(shí)間少于14個(gè)小時(shí)被認(rèn)證為“不足夠的戶外暴露時(shí)間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為不足夠的戶外暴露時(shí)間與近視有關(guān)系?

近視

不近視

足夠的戶外暴露時(shí)間

不足夠的戶外暴露時(shí)間

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,均為邊長為的等邊三角形.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是( )

A. 設(shè)是實(shí)數(shù),則“”是“ ”的充分而不必要條件

B. :“,”則有:不存在,

C. 命題“若,則”的否命題為:“若,則

D. ,”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)試討論的單調(diào)區(qū)間,

2)若時(shí),存在x使得不等式成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有四個(gè)小球,分別寫有美、麗、中、國四個(gè)字,有放回地從中任取一個(gè)小球,直到“國”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生03之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表中、國、美、麗這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232 321 230 023 123 021 132 220 001

231 130 133 231 031 320 122 103 233

由此可以估計(jì),恰好第三次就停止的概率為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案