【題目】世界衛(wèi)生組織的最新研究報告顯示,目前中國近視患者人數(shù)多達6億,高中生和大學生的近視率均已超過七成,為了研究每周累計戶外暴露時間(單位:小時)與近視發(fā)病率的關(guān)系,對某中學一年級200名學生進行不記名問卷調(diào)查,得到如下數(shù)據(jù):
每周累積戶外暴露時間(單位:小時) | 不少于28小時 | ||||
近視人數(shù) | 21 | 39 | 37 | 2 | 1 |
不近視人數(shù) | 3 | 37 | 52 | 5 | 3 |
(1)在每周累計戶外暴露時間不少于28小時的4名學生中,隨機抽取2名,求其中恰有一名學生不近視的概率;
(2)若每周累計戶外暴露時間少于14個小時被認證為“不足夠的戶外暴露時間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯誤的概率不超過0.01的前提下認為不足夠的戶外暴露時間與近視有關(guān)系?
近視 | 不近視 | |
足夠的戶外暴露時間 | ||
不足夠的戶外暴露時間 |
附:
P | 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
【答案】(1) (2)見解析
【解析】
(1)根據(jù)題意,時間不少于28小時的4名學生中,近視1名,不近視3名,所以恰好一名近視:,4名學生抽2名共有:,然后求得其概率.
(2)先根據(jù)表格得出在戶外的時間與近視的人數(shù)分別是多少,完成列聯(lián)表,然后根據(jù)公式求得
的觀測值,得出結(jié)果.
(1)設(shè)“隨機抽取2名,其中恰有一名學生不近視”為事件,則
故隨機抽取2名,其中恰有一名學生不近視的概率為.
(2)根據(jù)以上數(shù)據(jù)得到列聯(lián)表:
近視 | 不近視 | |
足夠的戶外暴露時間 | 40 | 60 |
不足夠的戶外暴露時間 | 60 | 40 |
所以的觀測值,
故能在犯錯誤的概率不超過0.01的前提下認為不足夠的戶外暴露時間與近視有關(guān)系.
科目:高中數(shù)學 來源: 題型:
【題目】將具有如下性質(zhì)的3×3方格表稱為“T-網(wǎng)格”:
(1)五個格填1,四個格填0;
(2)三行、三列以及兩條對角線共八條線上至多有一條,其中三個數(shù)兩兩相等。
則不同的T-網(wǎng)格共有________個。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的PK賽,兩隊各由4名選手組成,每局兩隊各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設(shè)每局比賽A隊選手獲勝的概率均為,且各局比賽結(jié)果相互獨立,比賽結(jié)束時A隊的得分高于B隊的得分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設(shè)冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調(diào)查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣.
(1)完成下面的列聯(lián)表,并回答能否在犯錯誤的概率不超過0.1的前提下認為“對冰球是否有興趣與性別有關(guān)”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)若將頻率視為概率,現(xiàn)再從該校一年級全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072/p> | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)n為一個正整數(shù),三維空間內(nèi)的點集S滿足下述性質(zhì):
(1).空間內(nèi)不存在n個平面,使得點集S中的每個點至少在這n個平面中的一個平面上;
(2).對于每個點,均存在n個平面,使得中的每個點均至少在這n個平面中的一個平面上.
求點集S中點的個數(shù)的最小值與最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,某小區(qū)為進一步做好新型冠狀病毒肺炎疫情知識的教育,在小區(qū)內(nèi)開展“新型冠狀病毒防疫安全公益課”在線學習,在此之后組織了“新型冠狀病毒防疫安全知識競賽”在線活動.已知進入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應(yīng)的名次為第1,2,3,4名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請小區(qū)內(nèi)的所有業(yè)主在比賽結(jié)束前對四位業(yè)主的名次進行預測,若預測完全正確將會獲得禮品,現(xiàn)用a,b,c,d表示某業(yè)主對甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預測排列,記X=|a﹣1|+|b﹣2|+|c﹣3|+|d﹣4|.
(1)求該業(yè)主獲得禮品的概率;
(2)求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,為橢圓的上焦點,上一點在軸上方,且.
(1)求直線的方程;
(2)為直線與異于的交點,的弦,的中點分別為,若在同一直線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:當x>1時, x2+lnx<x3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,為測量坡高MN,選擇A和另一個山坡的坡頂C為測量觀測點.從A點測得M點的仰角∠MAN=60°,C點的仰角∠CAB=45°以及∠MAC=75°;從C點測得∠MCA=60°.已知坡高BC=50米,則坡高MN=______米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com