【題目】已知兩個平面,相互垂直,是它們的交線,則下面結(jié)論正確的是( )
A.垂直于平面的平面一定平行于平面
B.垂直于直線的平面一定平行于平面
C.垂直于平面的平面一定平行于直線
D.垂直于直線的平面一定與平面,都垂直
【答案】D
【解析】
根據(jù)空間中直線與平面、平面與平面的位置關(guān)系即可判斷四個選項.
對于A,當(dāng)兩個平面,相互垂直,且平面,為正方體的兩個面時,垂直于平面的平面會垂直于平面,所以A錯誤;
對于B,當(dāng)兩個平面,相互垂直,且平面,為正方體的兩個面時,垂直于直線的平面會垂直于平面,所以B錯誤;
對于C,當(dāng)兩個平面,相互垂直,且平面,為正方體的兩個面時,垂直于平面的平面可能平行于直線,也可能垂直于直線,所以C錯誤;
對于D,兩個平面,相互垂直,是它們的交線,由線面垂直性質(zhì)可知垂直于直線的平面一定與平面,都垂直,所以D正確;
綜上可知,D為正確選項,
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱柱的主視圖和俯視圖如圖所示(圖中一格為單位正方形),D、D1分別為棱AC和A1C1的中點.
(1)求側(cè)(左)視圖的面積,并證明平面A1ACC1⊥平面B1BDD1
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面坐標(biāo)系中xOy中,已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(為參數(shù)).以O為極點,x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.
(1)求曲線C的普通方程和直線l的極坐標(biāo)方程;
(2)設(shè)P為曲線C上的動點,求點P到直線l的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上任一點到,的距離之和為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點,設(shè)直線不經(jīng)過點,與交于,兩點,若直線的斜率與直線的斜率之和為,判斷直線是否過定點?若是,求出該定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日.在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊、春聯(lián)等方式來表達(dá)對新年的美好祝愿.某商家在春節(jié)前開展商品促銷活動,顧客凡購物金額滿50元,則可以任意免費領(lǐng)取一張“!弊只蛞桓贝郝(lián)。莖葉圖的統(tǒng)計數(shù)據(jù)是在不同時段內(nèi)領(lǐng)取“福”字和春聯(lián)的人數(shù),則它們的中位數(shù)依次為( )
A.25,27B.26,25C.26,27D.27,25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),其中.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)已知點,與交于點,與交于兩點,且,求的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解居民的用電情況,某地供電局抽查了該市若干戶居民月均用電量(單位:),并將樣本數(shù)據(jù)分組為,,,,,, ,其頻率分布直方圖如圖所示.
(1)若樣本中月均用電量在的居民有戶,求樣本容量;
(2)求月均用電量的中位數(shù);
(3)在月均用電量為,,,的四組居民中,用分層隨機抽樣法抽取戶居民,則月均用電量在的居民應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在處的切線與直線垂直,求的極值;
(2)設(shè)與直線交于點,拋物線與直線交于點,若對任意,恒有,試分析的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com