如圖,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn)為F(1,0),且過(guò)點(diǎn)(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動(dòng)弦,直線l:x=4與x軸交于點(diǎn)N,直線AF與BN交于點(diǎn)M.
(ⅰ)求證:點(diǎn)M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.

(Ⅰ)由題設(shè)a=2,c=1,從而b2=a2-c2=3,
所以橢圓C前方程為
x2
4
+
y2
3
=1

(Ⅱ)(i)由題意得F(1,0),N(4,0).
設(shè)A(m,n),則B(m,-n)(n≠0),
m2
4
+
n2
3
=1.①
AF與BN的方程分別為:n(x-1)-(m-1)y=0,
n(x-4)-(m-4)y=0.
設(shè)M(x0,y0),則有n(x0-1)-(m-1)y0=0,②
n(x0-4)+(m-4)y0=0,③
由②,③得
x0=
5m-8
2m-5
,y0=
3n
2m-5

由于
x20
4
+
y20
3
=
(5m-8)2
4(2m-5)2
+
3n2
(2m-5)2

=
(5m-8)2
4(2m-5)2
+
3n2
(2m-5)2

=
(5m-8)2+12n2
4(2m-5)2

=
(5m-8)2+36-9m2
4(2m-5)2

=1
所以點(diǎn)M恒在橢圓G上.
(ⅱ)設(shè)AM的方程為x=ty+1,
代入
x2
4
+
y2
3
=1,得(3t2+4)y2+6ty-9=0.
設(shè)A(x1,y1),M(x2,y2),則有y1+y2=-
6x
3x2+4
,y1y2=-
9
3t2+4

|y1-y2|=
(y1+y2)2-4y1y2
=
4
3
3t2+3
3t2+4

令3t2+4=λ(λ≥4),則|y1-y2|=
4
3•
λ-1
λ
=4
3
-(
1
λ
)
2
+
1
λ
=4
3
-(
1
λ
-
1
2
)
3
+
1
4
,
∵λ≥4,0<
1
λ
1
4
,∴當(dāng)
1
λ
=
1
4
,即λ=4,t=0時(shí),|y1-y2|有最大值3,此時(shí)AM過(guò)點(diǎn)F,△AMN的面積S△AMN=|FN||y1-y2|=
3
2
|y1-y2|
有最大值
9
2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知B(-1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),且點(diǎn)B到橢圓的兩個(gè)焦點(diǎn)距離之和為4;
(1)求橢圓方程;
(2)設(shè)A為橢圓的左頂點(diǎn),直線AB交y軸于點(diǎn)C,過(guò)C作斜率為k的直線l交橢圓于D,E兩點(diǎn),若
S△CBD
S△CAE
=
1
6
,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(備用題)如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的點(diǎn)M(1,
3
2
)
到它的兩焦點(diǎn)F1、F2的距離之和為4,A、B分別是它的左頂點(diǎn)和上頂點(diǎn).
(Ⅰ)求此橢圓的方程及離心率;
(Ⅱ)平行于AB的直線l與橢圓相交于P、Q兩點(diǎn),求|PQ|的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示的曲線C是由部分拋物線C1:y=x2-1(|x|≥1)和曲線C2x2+
y2
m
=1
(y≤0,m>0)“合成”的,直線l與曲線C1相切于點(diǎn)M,與曲線C2相切于點(diǎn)N,記點(diǎn)M的橫坐標(biāo)為t(t>1),其中A(-1,0),B(1,0).
(1)當(dāng)t=
2
時(shí),求m的值和點(diǎn)N的坐標(biāo);
(2)當(dāng)實(shí)數(shù)m取何值時(shí),∠MAB=∠NAB?并求出此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,線段AB的兩個(gè)端點(diǎn)A、B分別分別在x軸、y軸上滑動(dòng),|AB|=5,點(diǎn)M是AB上一點(diǎn),且|AM|=2,點(diǎn)M隨線段AB的運(yùn)動(dòng)而變化.
(1)求點(diǎn)M的軌跡方程;
(2)設(shè)F1為點(diǎn)M的軌跡的左焦點(diǎn),F(xiàn)2為右焦點(diǎn),過(guò)F1的直線交M的軌跡于P,Q兩點(diǎn),求S△PQF2的最大值,并求此時(shí)直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)B(0,1),A,C為橢圓C:
x2
a2
+y2
=1(a>1)上的兩點(diǎn),△ABC是以B為直角頂點(diǎn)的直角三角形.
(1)△ABC能否為等腰三角形?若能,這樣的三角形有幾個(gè)?
(2)當(dāng)a=2時(shí),求線段AC的中垂線l在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,右焦點(diǎn)為(2
2
,0).斜率為1的直線l與橢圓G交于A,B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為P(-3,2).
(Ⅰ)求橢圓G的方程;
(Ⅱ)求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),拋物線準(zhǔn)線與x軸交于C點(diǎn),若∠CBF=90°,則|AF|-|BF|的值為( 。
A.
p
2
B.pC.
3p
2
D.2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為( )
A.B.2 C.D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案