已知點B(0,1),A,C為橢圓C:
x2
a2
+y2
=1(a>1)上的兩點,△ABC是以B為直角頂點的直角三角形.
(1)△ABC能否為等腰三角形?若能,這樣的三角形有幾個?
(2)當a=2時,求線段AC的中垂線l在x軸上截距的取值范圍.
(1)不妨設lAB:y=kx+1(k>0),lBC:y=-
1
k
x+1

y=kx+1
x2
a2
+y2=1
,得(1+a2k2)x2+2ka2x=0,…①
|AB|=
1+k2
|xA-xB|=
1+k2
2ka2
1+a2k2

同理可得:|BC|=
1+
1
k2
2a2
k
1+
a2
k2
=
1+k2
2a2
k2+a2

由|AB|=|BC|得,k3-a2k2+a2k-1=0,
即(k-1)[k2+(1-a2)k+1]=0,解得k=1或k2+(1-a2)k+1=0.
對于k2+(1-a2)k+1=0,
由(1-a22-4=0,得a=
3
,此時方程的根k=1;
當1<a
3
時,方程k2+(1-a2)k+1=0無實根;
當a>
3
時,方程k2+(1-a2)k+1=0有兩個不等實數(shù)根.
∴當a>
3
時,這樣的三角形有3個;當1<a≤
3
時這樣的三角形有1個;
(2)由a=2,可得橢圓的方程為
x2
4
+y2=1

直線AC與x軸垂直時不符合題意.
①直線AC的斜率為0時,線段AC的垂直平分線為y軸,此時線段AC的垂直平分線在x軸上的截距為0.
②設直線AC的方程為my=x+t.(m≠0),A(x1,y1),C(x2,y2).
聯(lián)立
my=x+t
x2+4y2=4
,化為(4+m2)y2-2mty+t2-4=0.
∵直線AC與橢圓有兩個交點,∴△=4m2t2-4(4+m2)(t2-4)>0,化為4+m2>t2.(*)
y1+y2=
2mt
4+m2
,y1y2=
t2-4
4+m2
.(**)
設線段AC的中點M(x0,y0),則y0=
y1+y2
2
=
mt
4+m2
,x0=my0-t=
-4t
4+m2

∴M(
-4t
4+m2
mt
4+m2
)

∵AB⊥BC,
BA
BC
=(x1,y1-1)•(x2,y2-1)=x1x2+(y1-1)(y2-1)
=(my1-t)(my2-t)+(y1-1)(y2-1)=(m2+1)y1y2-(mt+1)(y1+y2)+t2+1=0.
把(**)代入上式可得:
(m2+1)(t2-4)
4+m2
-
2mt(mt+1)
4+m2
+t2+1=0,
化為 5t2-2mt-3m2=0,即(5t+3m)(t-m)=0.
解得t=m或t=-
3m
5

當t=m時,直線AC化為m(y-1)=x過點(0,1),舍去.
t=-
3m
5
時,滿足(*).
又線段AC的垂直平分線為:y-
mt
4+m2
=-m(x+
4t
4+m2
)

令y=0,得x=
-3t
4+m2
,
t=-
3m
5
代入上式可得x=
9m
5(4+m2)
=
9
5
4
m
+m
,
當m>0時,0<x≤
9
20

當m<0時,-
9
20
≤m<0

綜上可知:線段AC的中垂線l在x軸上截距的取值范圍是[-
9
20
,
9
20
]
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓E:
x2
a2
+
y2
3
=1
(a
3
)的離心率e=
1
2
.直線x=t(t>0)與曲線 E交于不同的兩點M,N,以線段MN 為直徑作圓 C,圓心為 C.
(1)求橢圓E的方程;
(2)若圓C與y軸相交于不同的兩點A,B,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知定點A(2,0),它與拋物線y2=x上的動點P連線的中點M的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個焦點為F(1,0),且過點(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AF與BN交于點M.
(。┣笞C:點M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線y=x2上有一條長為2的動弦AB,則AB中點M到x軸的最短距離為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線C:y2=2px(p>0)的焦點為F,過F且斜率為1的直線l與拋物線C相交于A,B兩點,若線段AB的中點到拋物線C準線的距離為4,則p的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知離心率為
3
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>o)過點M(2,1),O為坐標原點,平行于OM的直線l交橢圓于C不同的兩點A,B.
(1)求橢圓的C方程.
(2)證明:若直線MA,MB的斜率分別為k1、k2,求證:k1+k2=0.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
3
2
,且過點(
3
,
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設直線l:y=kx+m(k≠0,m>0)與橢圓交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:△OPQ面積的最大值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標原點,若|AF|=5,則△AOB的面積為( 。
A.5B.
5
2
C.
3
2
D.
17
8

查看答案和解析>>

同步練習冊答案