選修4-1:幾何證明選講
已知AD是△ABC的外角∠EAC的平分線(xiàn),交BC的延長(zhǎng)線(xiàn)于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB,F(xiàn)C.
(1)求證:FB=FC;
(2)若AB是△ABC外接圓的直徑,∠EAC=120°,BC=6,求AD的長(zhǎng).

(1)證明:∵AD平分∠EAC,∴∠EAD=∠DAC;
∵四邊形AFBC內(nèi)接于圓,∴∠DAC=∠FBC; …(3分)
∵∠EAD=∠FAB=∠FCB,
∴∠FBC=∠FCB,
∴FB=FC.…(5分)
(2)解:∵AB是圓的直徑,∴∠ACD=90°
∵∠EAC=120°,∴∠DAC=∠EAC=60°,∠D=30°…(7分)
在Rt△ACB中,∵BC=6,∠BAC=60°∴AC=2
又在Rt△ACD中,∠D=30°,AC=2
∴AD=4 …(10分)
分析:(1)利用AD平分∠EAC,可得∠EAD=∠DAC,利用四邊形AFBC內(nèi)接于圓,可得∠DAC=∠FBC,由此可知FB=FC;
(2)利用AB是圓的直徑,可得∠ACD=90°,結(jié)合∠EAC=120°,可得∠DAC=∠EAC=60°,∠D=30°,從而利用特殊角的三角函數(shù),即可求得AD的長(zhǎng).
點(diǎn)評(píng):本題考查幾何證明選講,考查圓的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.
(1)求DE的長(zhǎng);
(2)延長(zhǎng)ED到P,過(guò)P作圓O的切線(xiàn),切點(diǎn)為C,若PC=2
5
,求PD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過(guò)點(diǎn)D引割線(xiàn)交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線(xiàn)l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線(xiàn)PA,切點(diǎn)為A,M為PA的中點(diǎn),過(guò)點(diǎn)M引圓O的割線(xiàn)交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線(xiàn)AB經(jīng)過(guò)圓上O的點(diǎn)C,并且OA=OB,CA=CB,圓O交于直線(xiàn)OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使得CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案