【題目】已知函數(shù)是偶函數(shù).

(1)求的值;

(2)若函數(shù)的圖像與直線沒(méi)有交點(diǎn),求的取值范圍;

(3)若函數(shù),是否存在實(shí)數(shù)使得最小值為0,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)(2)(3)存在最小值為0.

【解析】試題分析:(1)若函數(shù)是偶函數(shù),則恒成立,化簡(jiǎn)可得從而可求得的值;(2)若函數(shù)的圖象與直線沒(méi)有交點(diǎn),方程無(wú)解,則函數(shù)的圖象與直線無(wú)交點(diǎn),則不屬于函數(shù)值域,從而可得結(jié)果;(3)函數(shù),,,結(jié)合二次函數(shù)的圖象和性質(zhì),分類(lèi)討論可得的值.

試題解析:(1)∵,即對(duì)于任意恒成立.

(2)由題意知方程即方程無(wú)解.

,則函數(shù)的圖象與直線無(wú)交點(diǎn).

任取,且,則,∴

,

上是單調(diào)減函數(shù).

,∴

的取值范圍是

(3)由題意,令

∵開(kāi)口向上,對(duì)稱(chēng)軸,

當(dāng),即,

當(dāng),即, (舍去)

當(dāng),即, (舍去)

∴存在最小值為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子里有編號(hào)為的五個(gè)球,某位教師從袋中任取兩個(gè)不同的球. 教師把所取兩球編號(hào)的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個(gè)球的編號(hào).

甲說(shuō):我無(wú)法確定.”

乙說(shuō):我也無(wú)法確定.”

甲聽(tīng)完乙的回答以后,甲又說(shuō):我可以確定了.”

根據(jù)以上信息, 你可以推斷出抽取的兩球中

A. 一定有3號(hào)球 B. 一定沒(méi)有3號(hào)球 C. 可能有5號(hào)球 D. 可能有6號(hào)球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)是R上的可導(dǎo)函數(shù),對(duì)于任意的正實(shí)數(shù)t,都有函數(shù)g(x)=f(x+t)﹣f(x)在其定義域內(nèi)為減函數(shù),則函數(shù)y=f(x)的圖象可能為如圖中(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)有三個(gè)向量 ,其中∠AOB=60°,∠AOC=30°,且 , ,若 ,則λ+μ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列.Sn為其前n項(xiàng)和,且滿足an2=S2n1(n∈N*),bn=an2+λan , 若{bn}為遞增數(shù)列,則實(shí)數(shù)λ的范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,且對(duì)任意實(shí)數(shù)恒有)成立.

(1)求函數(shù)的解析式;

(2)討論上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l:ax﹣y+1=0與x軸,y軸分別交于點(diǎn)A,B.
(1)若a>0,點(diǎn)M(1,﹣1),點(diǎn)N(1,4),且以MN為直徑的圓過(guò)點(diǎn)A,求以AN為直徑的圓的方程;
(2)以線段AB為邊在第一象限作等邊三角形ABC,若a=﹣ ,且點(diǎn)P(m, )(m>0)滿足△ABC與△ABP的面積相等,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中, , 分別為線段上的點(diǎn),且,

.

(1)求證: 平面

(2)若與平面所成的角為,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(4,﹣3),B(2,﹣1)和直線l:4x+3y﹣2=0.
(1)求在直角坐標(biāo)平面內(nèi)滿足|PA|=|PB|的點(diǎn)P的方程;
(2)求在直角坐標(biāo)平面內(nèi)一點(diǎn)P滿足|PA|=|PB|且點(diǎn)P到直線l的距離為2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案