【題目】已知函數(shù)的定義域為,且對任意實數(shù)恒有)成立.

(1)求函數(shù)的解析式;

(2)討論上的單調性,并用定義加以證明.

【答案】(1)(2)當時, 上為單調減函數(shù);當時, 上為單調增函數(shù).

【解析】試題分析:(1) ①,用替換①式中的有: ,由①②消去即可得結果;(2)討論兩種情況,分別利用復合函數(shù)的單調性判斷其單調性,再利用定義意,判定的符合,即可證明結論.

試題解析:(1)∵對任意實數(shù)恒有: ①,

替換①式中的有: ②,

①×②—②得: ,

(2)當時,函數(shù)為單調減函數(shù),函數(shù)也為單調減函數(shù),

上為單調減函數(shù).

時,函數(shù)為單調增函數(shù),函數(shù)也為單調增函數(shù),

上為單調增函數(shù).

證明:設任意,則

,∵, ,

①當時,則,∴

上是減函數(shù).

②當時,則,∴

上是增函數(shù).

綜上:當時, 上為單調減函數(shù);

時, 上為單調增函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】假設某種設備使用的年限x(年)與所支出的維修費用y(元)有以下統(tǒng)計資料:

參考數(shù)據(jù): .參考公式:

如果由資料知yx呈線性相關關系.試求:

1 2)線性回歸方程

3)估計使用10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個周期內的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+ )??
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)的單調區(qū)間;

(2)若關于的方程有實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求的值;

(2)若函數(shù)的圖像與直線沒有交點,求的取值范圍;

(3)若函數(shù),是否存在實數(shù)使得最小值為0,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電影院共有1000個座位,票價不分等次,根據(jù)影院的經營經驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數(shù)倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入),問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1的各個頂點與各棱的中點共20個點中,任取2點連成直線,在這些直線中任取一條,它與對角線BD1垂直的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)關于的不等式的解集不是空集,求的取值范圍;

(2),,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣4x+3,g(x)=m(x﹣1)+2(m>0),若存在x1∈[0,3],使得對任意的x2∈[0,3],都有f(x1)=g(x2),則實數(shù)m的取值范圍是(
A.
B.(0,3]
C.
D.[3,+∞)

查看答案和解析>>

同步練習冊答案