復(fù)數(shù)
2a+i
1-2i
•i2014(i是虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a的值為( 。
A、
1
4
B、-
1
4
C、1
D、-1
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和復(fù)數(shù)i的冪運(yùn)算,化簡復(fù)數(shù)為a+bi的形式,通過復(fù)數(shù)的虛部不為0,實(shí)部為0,即可得出實(shí)數(shù)a的值.
解答: 解:復(fù)數(shù)
2a+i
1-2i
•i2014=
2a+i
1-2i
i2
=-
2a+i
1-2i
=-
(2a+i)(1+2i)
(1-2i)(1+2i)
=-
2a-2+(4a+1)i
5
,
∵復(fù)數(shù)
2a+i
1-2i
•i2014(i是虛數(shù)單位)為純虛數(shù),
2a-2=0
4a+1≠0
,解得a=1.
故選:C.
點(diǎn)評:本題考查了復(fù)數(shù)的運(yùn)算法則和周期性,復(fù)數(shù)的代數(shù)形式的混合運(yùn)算以及復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量X服從正態(tài)分布,X的取值落在區(qū)間(-3,-1)內(nèi)的概率和落在區(qū)間(3,5)內(nèi)的概率是相等的,那么隨機(jī)變量X的數(shù)學(xué)期望為( 。
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若a1=-2,且對任意的n∈N*有2an+1=1+2an,則數(shù)列{an}前10項(xiàng)的和為( 。
A、5
B、10
C、
5
2
D、
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由直線x=1,x=2,y=0與拋物線y=x2所圍成的曲邊梯形的面積為(  )
A、
1
3
B、
5
3
C、
7
3
D、
11
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a、b、c分別為角A、B、C所對的邊,且cos2B+cosB+cos(A-C)=1,則有( 。
A、a、c、b 成等比數(shù)列
B、a、c、b 成等差數(shù)列
C、a、b、c 成等差數(shù)列
D、a、b、c成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:sin10°cos110°+cos170°sin70°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的點(diǎn) (
3
,
3
2
)到它的兩個(gè)焦點(diǎn)的距離之和為4
(Ⅰ)求橢圓的方程:
(Ⅱ)A,B是橢圓上關(guān)于x軸對稱的兩點(diǎn),設(shè)D(4,0),連接DB交橢圓于另一點(diǎn)F,證明直線AE恒過x軸上的定點(diǎn)P;
(Ⅲ)在(Ⅱ)的條件下,過點(diǎn)P的直線與橢圓交于M,N兩點(diǎn),求
OM
ON
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=-
1
4
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[0,+∞)時(shí),函數(shù)y=f(x)圖象上的點(diǎn)都在
x≥0
y-x≤0
所表示的平面區(qū)域內(nèi),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(4,-3),向量
b
=(2,1),若
a
-t
b
b
的夾角為45°,求實(shí)數(shù)t的值.

查看答案和解析>>

同步練習(xí)冊答案