【題目】某地擬在一個U形水面PABQ(∠A=∠B=90°)上修一條堤壩(E在AP上,N在BQ上),圍出一個封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點M處分別向點E,N拉2條分隔線ME,MN,將所圍區(qū)域分成3個部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設(shè)所拉分隔線總長度為l.
(1)設(shè)∠AME=2θ,求用θ表示的l函數(shù)表達(dá)式,并寫出定義域;
(2)求l的最小值.
【答案】(1)l=,θ∈(0,);(2)lmin=2a.
【解析】
(1)設(shè)MN=x,根據(jù)AM+BM=a,求出x=,再求得l=,θ∈(0,);(2)令f(θ)=sinθ(1-sinθ),sinθ∈(0,),利用二次函數(shù)的圖像和性質(zhì)求l的最小值.
解:(1)∵EM=BM,∠B=∠MEN,
∴△BMN≌△EMN,
∴∠BNM=∠MNE,
∵∠AME=2θ,
∴∠BNM=∠MNE=θ,
設(shè)MN=x,
在△BMN中,BM=xsinθ,∴EM=BM=xsinθ,
∴△EAM中,AM=EMcos2θ=xsinθcos2θ,
∵AM+BM=a,
∴xsinθcos2θ+xsinθ=a,
∴x=,
∴l=EM+MN=,θ∈(0,);
(2)令f(θ)=sinθ(1-sinθ),sinθ∈(0,),
∴f(θ)≤,
當(dāng)且僅當(dāng)θ=時,取得最大值,此時lmin=2a.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)六個從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?
(2)把5件不同產(chǎn)品擺成一排,若產(chǎn)品與產(chǎn)品相鄰,且產(chǎn)品與產(chǎn)品不相鄰,則不同的擺法有幾種?
(3)某次聯(lián)歡會要安排3個歌舞類節(jié)目、2個小品類節(jié)目和1個相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法有幾種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,,為其左、右頂點,為橢圓上除,外任意一點,若記直線,斜率分別為,.
(1)求證:為定值;
(2)若橢圓的長軸長為4,過點作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點,求與橢圓相交的弦的中點的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實數(shù),且p+q+r=a,求證:p2+q2+r2≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關(guān)注程度,某機構(gòu)隨機抽取了年齡在15-75歲之間的100人進行調(diào)查, 經(jīng)統(tǒng)計“青少年”與“中老年”的人數(shù)之比為9:11
關(guān)注 | 不關(guān)注 | 合計 | |
青少年 | 15 | ||
中老年 | |||
合計 | 50 | 50 | 100 |
(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認(rèn)為關(guān)注“一帶一路”是否和年齡段有關(guān)?
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調(diào)查.在這9人中再選取3人進行面對面詢問,記選取的3人中關(guān)注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
附:參考公式,其中
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)產(chǎn)品件的總成本(萬元).已知產(chǎn)品單價(萬元)與產(chǎn)品件數(shù)滿足,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元.
(1)設(shè)產(chǎn)量為件時,總利潤為(萬元),求的解析式;
(2)產(chǎn)量定為多少時總利潤(萬元)最大?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+x-6y+m=0與直線l:x+2y-3=0.
(1)若直線l與圓C沒有公共點,求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點,O為原點,且OP⊥OQ,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣k( +lnx)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)).
(1)當(dāng)k≤0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0,2)內(nèi)存在兩個極值點,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com