【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).
(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?
(2)以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.若上的點對應(yīng)的參數(shù)為,點在上,點為的中點,求點到直線距離的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理﹑化學(xué)等其他互不相同的七個學(xué)院,現(xiàn)從這10名同學(xué)中隨機選取3名同學(xué),到希望小學(xué)進行支教活動(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機變量的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C三地有直道相通,其中AB、BC為步行道,AC為機動車道,已知A在B的正北方向6千米處,C在B的正東方向千米處,某校開展步行活動,從A地出發(fā),經(jīng)B地到達C地,中途不休息.
(1)媒體轉(zhuǎn)播車從A出發(fā),沿AC行至點P處,此時,求PB的距離;
(2)媒體記者隨隊步行,媒體轉(zhuǎn)播車從A地沿AC前往C,兩者同時出發(fā),步行的速度為6千米/小時,為配合轉(zhuǎn)播,轉(zhuǎn)播車的速度為12千米/小時,記者和轉(zhuǎn)播車通過專用對講機保持聯(lián)系,轉(zhuǎn)播車開到C地后原地等待,直到記者到達C地,若對講機的有效通話距離不超過9千米,求他們通過對講機能保持聯(lián)系的總時長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了激勵業(yè)務(wù)員的積極性,對業(yè)績在60萬到200萬的業(yè)務(wù)員進行獎勵獎勵方案遵循以下原則:獎金y(單位:萬元)隨著業(yè)績值x(單位:萬元)的增加而增加,且獎金不低于1.5萬元同時獎金不超過業(yè)績值的5%.
(1)若某業(yè)務(wù)員的業(yè)績?yōu)?/span>100萬核定可得4萬元獎金,若該公司用函數(shù)(k為常數(shù))作為獎勵函數(shù)模型,則業(yè)績200萬元的業(yè)務(wù)員可以得到多少獎勵?(已知,)
(2)若采用函數(shù)作為獎勵函數(shù)模型試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點是函數(shù)的圖象的一個對稱中心,且點到該圖象的對稱軸的距離的最小值為.
①的最小正周期是;
②的值域為;
③的初相為;
④在上單調(diào)遞增.
以上說法正確的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:
(1)“若,則,互為倒數(shù)”的逆命題;
(2)“面積相等的三角形全等”的否命題;
(3)“若,則有實數(shù)解”的逆否命題;
(4)“若,則”的逆否命題.
其中真命題為( )
A. (1)(2) B. (2)(3) C. (4) D. (1)(2)(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞網(wǎng)點收取快遞費用的標(biāo)準(zhǔn)是重量不超過的包裹收費10元,重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).
(1)求這60天每天包裹數(shù)量的平均數(shù)和中位數(shù);
(2)該快遞網(wǎng)點負責(zé)人從收取的每件快遞的費用中抽取5元作為工作人員的工資和網(wǎng)點的利潤,剩余的作為其他費用.已知該網(wǎng)點有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該網(wǎng)點每天的利潤有多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的頂點坐標(biāo)分別是,的外接圓為.
(1)求圓的方程;
(2)在圓上是否存在點,使得?若存在,求點的個數(shù):若不存在,說明理由;
(3)在圓上是否存在點,使得?若存在,求點的個數(shù):若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com