8.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若a2+b2<c2,則△ABC的形狀是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

分析 由條件利用余弦定理求得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$<0,故C為鈍角,從而判斷△ABC的形狀.

解答 解:△ABC中,由a2+b2<c2 可得 cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$<0,故C為鈍角,
故△ABC的形狀是鈍角三角形,
故選:C.

點評 本題主要考查余弦定理的應(yīng)用,判斷三角形的形狀的方法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.我們把各位數(shù)字之和等于6的三位數(shù)稱為“吉祥數(shù)”,例如123就是一個“吉祥數(shù)”,則這樣的“吉祥數(shù)”一共有( 。
A.28個B.21個C.35個D.56個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\frac{{{ln|x}|}}{{{e^x}-{e^{-x}}}}$的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)y=2sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{6}$)的圖象各點的橫坐標縮短為原來的$\frac{1}{2}$,再向左平移$\frac{π}{24}$個單位,得到函數(shù)的圖象的對稱中心可以是(  )
A.($\frac{π}{4}$,0)B.($\frac{π}{8}$,0)C.($\frac{π}{2}$,0)D.($\frac{5π}{24}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c滿足a≠b,2sin(A-B)=asinA-bsinB
(Ⅰ)求邊c
(Ⅱ)若△ABC的面積為1,且tanC=2,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于x的不等式x2-ax-6a2>0(a<0)的解集為(-∞,x1)∪(x2,+∞),且x2-x1=5$\sqrt{2}$,則a的值為(  )
A.-$\sqrt{5}$B.-$\frac{3}{2}$C.-$\sqrt{2}$D.-$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a2-a<2,且a∈N*,求函數(shù)f(x)=x+$\frac{2a}{x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.$f(x)={log_{\frac{1}{2}}}(3-2x-{x^2})$的增區(qū)間為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)$a=\sqrt{3},b=\sqrt{15}-\sqrt{7},c=\sqrt{11}-\sqrt{3}$,那么a,b,c的大小關(guān)系是(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

同步練習(xí)冊答案