17.$f(x)={log_{\frac{1}{2}}}(3-2x-{x^2})$的增區(qū)間為(-1,1).

分析 由對數(shù)型復合函數(shù)的真數(shù)大于0求出函數(shù)的定義域,進一步求出內函數(shù)的減區(qū)間得答案.

解答 解:由3-2x-x2>0,得x2+2x-3<0,解得-3<x<1.
當x∈(-1,1)時,內函數(shù)t=-x2-2x+3為減函數(shù),而外函數(shù)y=$lo{g}_{\frac{1}{2}}t$為減函數(shù),
由復合函數(shù)的單調性可得,$f(x)={log_{\frac{1}{2}}}(3-2x-{x^2})$的增區(qū)間為(-1,1).
故答案為:(-1,1).

點評 本題主要考查了復合函數(shù)的單調性以及單調區(qū)間的求法.對應復合函數(shù)的單調性,一要注意先確定函數(shù)的定義域,二要利用復合函數(shù)與內層函數(shù)和外層函數(shù)單調性之間的關系進行判斷,判斷的依據(jù)是“同增異減”,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.在極坐標系中,曲線C1:ρ=2cosθ,曲線 ${C_2}:ρ{sin^2}θ=4cosθ$.以極點為坐標原點,極軸為x軸正半軸建立直角坐標系xOy,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)).
(Ⅰ)求C1,C2的直角坐標方程;
(Ⅱ)C與C1,C2交于不同四點,這四點在C上的排列順次為P,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設△ABC的內角A,B,C所對的邊分別為a,b,c,若a2+b2<c2,則△ABC的形狀是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,直線y=x+$\sqrt{6}$與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C相較于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.雙曲線y2-2x2=8的漸近線方程為$y=±\sqrt{2}x$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.點P為直線$y=\frac{3}{4}x$上任一點,F(xiàn)1(-5,0),F(xiàn)2(5,0),則下列結論正確的是( 。
A.||PF1|-|PF2||>8B.||PF1|-|PF2||=8C.||PF1|-|PF2||<8D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設f(x)是定義在R上的最小正周期為$\frac{7π}{6}$的函數(shù),且在$[-\frac{5π}{6},\frac{π}{3})$上$f(x)=\left\{\begin{array}{l}sinx,x∈[-\frac{5π}{6},0)\\ cosx+a,x∈[0,\frac{π}{3}]\end{array}\right.$,則a=-1,$f(-\frac{16π}{3})$=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.2016年9 月4日至5日在中國杭州召開了G20峰會,會后某10國集團領導人站成前排3人后排7人準備請攝影師給他們拍照,現(xiàn)攝影師打算從后排7人中任意抽2人調整到前排,使每排各5人.若調整過程中另外8人的前后左右相對順序不變,則不同調整方法的總數(shù)是(  )
A.$C_7^2A_3^2$B.$C_7^2A_5^5$C.$C_7^2A_5^2$D.$C_7^2A_4^2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知△ABC中,A(1,3),BC邊所在的直線方程為y-1=0,AB邊上的中線所在的直線方程為x-3y+4=0.
(Ⅰ)求B,C點的坐標;
(Ⅱ)求△ABC的外接圓方程.

查看答案和解析>>

同步練習冊答案