解:。當(dāng)a>0,x>0時(shí)
f ¢(x)>0Ûx2+(2a-4)x+a2>0。
f ¢(x)<0Ûx2+(2a-4)x+a2<0 (i)當(dāng)a>1時(shí),對(duì)所有x>0,有x2+(2a-4)+a2>0。即f ¢(x)>0,此時(shí)f(x)在(0,+¥)內(nèi)單調(diào)遞增; (ii)當(dāng)a=1時(shí),對(duì)x¹1,有x2+(2a-4)x+a2>0,即f ¢(x)>0,此時(shí)f(x)在(0,1)內(nèi)單調(diào)遞增,又知函數(shù)f(x)在x=1處連續(xù),因此,函數(shù)f(x)在(0,+¥)內(nèi)單調(diào)遞增; (iii)當(dāng)0<a<1時(shí),令f ¢(x)>0,即x2+(2a-4)x+a2>0。 解得,或。 因此,函數(shù)f(x)在區(qū)間()內(nèi)單調(diào)遞增,在區(qū)間()內(nèi)也單調(diào)遞增。令f ¢(x)<0,即x2+(2a-4)x+a2<0,解得。因此,函數(shù)f(x)在區(qū)間
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
設(shè)a>0,求函數(shù)f(x)=-ln(x+a)(xÎ(0,+¥))的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:同步題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分)
已知函數(shù)
(1)若函數(shù)的圖像過(guò)原點(diǎn),且在原點(diǎn)處的切線斜率是-3,求a,b的值.
(2)在(1)的條件下,如果a>0,求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com