本題主要考查導(dǎo)數(shù)的概念和計(jì)算,應(yīng)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法及推理和運(yùn)算能力.
解: 當(dāng)a>0,x>0時 f¢(x)>0Ûx2+(2a-4)x+a2>0.f¢(x)<0Ûx2+(2a-4)x+a2<0 (1)當(dāng)a>1時,對所有x>0,有x2+(2a-4)+a2>0.即f¢(x)>0,此時f(x)在(0,+¥)內(nèi)單調(diào)遞增.(2)當(dāng)a=1時,對x¹1,有x2+(2a-4)+a2>0,即f¢(x)>0,此時f(x)在(0,1)內(nèi)單調(diào)遞增,又知函數(shù)f(x)在x=1處連續(xù),因此,函數(shù)f(x)在(0,+¥)內(nèi)單調(diào)遞增.(3)當(dāng)0<a<1時,令f¢(x)>0,即x2+(2a-4)x+a2>0.解得x<2-a-,或x>2-a+.因此,函數(shù)f(x)在區(qū)間(0,2-a-)內(nèi)單調(diào)遞增,在區(qū)間(2-a+,+¥)內(nèi)也單調(diào)遞增.令f¢(x)<0,即x2+(2a-4)+a2<0,解得2-a-<x<2-a+.因此,函數(shù)f(x)在區(qū)間(2-a-,2-a+)內(nèi)單調(diào)遞減
|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
lnx | x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
lnx | x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com