如圖,在高為4的長方體ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,則直線AB1與DA1所成角的余弦值是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:連接B1C,AC,由正方體的幾何特征,可得∠AB1C即為直線AB1與DA1所成角,根據(jù)已知中長方體ABCD-A1B1C1D1的高為4,底面ABCD是邊長為2的正方形,求出△AB1C中各邊的長,解△AB1C即可得到直線AB1與DA1所成角的余弦值.
解答:連接B1C,AC
由正方體的幾何特征,可得AB1∥B1C
則∠AB1C即為直線AB1與DA1所成角
∵長方體ABCD-A1B1C1D1的高為4,底面ABCD是邊長為2的正方形,
則AB1=B1C=2,AC=2
∴cos∠AB1C==
故選C
點評:本題考查的知識點是異面直線及其所成的角,其中結(jié)合正方體的幾何特征得到∠AB1C即為直線AB1與DA1所成角,是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)有一塊邊長為4的正方形鋼板,現(xiàn)對其進行切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計).有人應用數(shù)學知識作了如下設計:如圖(a),在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高為小正方形邊長,如圖(b).
(1)請你求出這種切割、焊接而成的長方體的最大容積V1;
(2)由于上述設計存在缺陷(材料有所浪費),請你重新設計切、焊方法,使材料浪費減少,而且所得長方體容器的容積V2>V1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在高為4的長方體ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,則直線AB1與DA1所成角的余弦值是(  )
A、-
2
5
B、
2
5
C、
4
5
D、
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有一塊邊長為4的正方形鋼板,現(xiàn)對其進行切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計).有人應用數(shù)學知識作了如下設計:如圖(a),在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高為小正方形邊長,如圖(b).

(1)請你求出這種切割、焊接而成的長方體的最大容積V1;

(2)由于上述設計存在缺陷(材料有所浪費),請你重新設計切、焊方法,使材料浪費減少,而且所得長方體容器的容積V2>V1.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年福建省泉州市惠安縣惠南中學高二(上)期末數(shù)學試卷(選修2-1)(理科)(解析版) 題型:選擇題

如圖,在高為4的長方體ABCD-A1B1C1D1中,底面ABCD是邊長為2的正方形,則直線AB1與DA1所成角的余弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案