精英家教網(wǎng)如圖,在高為4的長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形,則直線AB1與DA1所成角的余弦值是( 。
A、-
2
5
B、
2
5
C、
4
5
D、
10
10
分析:連接B1C,AC,由正方體的幾何特征,可得∠AB1C即為直線AB1與DA1所成角,根據(jù)已知中長(zhǎng)方體ABCD-A1B1C1D1的高為4,底面ABCD是邊長(zhǎng)為2的正方形,求出△AB1C中各邊的長(zhǎng),解△AB1C即可得到直線AB1與DA1所成角的余弦值.
解答:解:連接B1C,AC
由正方體的幾何特征,可得AB1∥B1C
則∠AB1C即為直線AB1與DA1所成角
∵長(zhǎng)方體ABCD-A1B1C1D1的高為4,底面ABCD是邊長(zhǎng)為2的正方形,
則AB1=B1C=2
5
,AC=2
2

∴cos∠AB1C=
20+20-8
2•20
=
4
5

故選C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是異面直線及其所成的角,其中結(jié)合正方體的幾何特征得到∠AB1C即為直線AB1與DA1所成角,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在面積為4的正方形ABCD中,連接各邊中點(diǎn)得正方形A1B1C1D1,此時(shí)正方形A1B1C1D1的面積記作a1;再連接正方形A1B1C1D1各邊中點(diǎn)得正方形A2B2C2D2,此時(shí)正方形A2B2C2D2的面積記作a2;…;如此繼續(xù)下去,得到一個(gè)數(shù)列{an}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=n•2n+1,cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為4的正方形ABCD所在平面與正三角形PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn),
(1)求四棱錐P-ABCD的體積;
(2)求證:PA∥平面MBD;
(3)試問(wèn):在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,在高為4的長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形,則直線AB1與DA1所成角的余弦值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年福建省泉州市惠安縣惠南中學(xué)高二(上)期末數(shù)學(xué)試卷(選修2-1)(理科)(解析版) 題型:選擇題

如圖,在高為4的長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形,則直線AB1與DA1所成角的余弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案