【題目】已知甲、乙兩地生產(chǎn)同一種瓷器,現(xiàn)從兩地的瓷器中隨機抽取了一共300件統(tǒng)計質(zhì)量指標值,得到如圖的兩個統(tǒng)計圖,其中甲地瓷器的質(zhì)量指標值在區(qū)間的頻數(shù)相等.

甲地瓷器質(zhì)量頻率分布直方圖 乙地瓷器質(zhì)量扇形統(tǒng)計圖

1)求直方圖中的值,并估計甲地瓷器質(zhì)量指標值的平均值;(同一組中的數(shù)據(jù)用區(qū)間的中點值作代表)

2)規(guī)定該種瓷器的質(zhì)量指標值不低于125為特等品,且已知樣本中甲地的特等品比乙地的特等品多10個,結(jié)合乙地瓷器質(zhì)量扇形統(tǒng)計圖完成下面的列聯(lián)表,并判斷是否有95%的把握認為甲、乙兩地的瓷器質(zhì)量有差異?

物等品

非特等品

合計

甲地

乙地

合計

附:,其中.

0.10

0.05

0.025

0.01

2.706

3.841

5.024

6.635

【答案】1 ;(2)見解析

【解析】

(1)根據(jù)頻率直方圖和各組數(shù)據(jù)的頻率和為1列出方程,可求得,再運用各組數(shù)據(jù)中的區(qū)間的中點值乘以該組的頻率之和可估計出甲地瓷器質(zhì)量指標值的平均值;

(2)根據(jù)樣本中甲地的特等品比乙地的特等品多10個,求得從甲地的瓷器中隨機抽取的產(chǎn)品數(shù)和從乙地的瓷器中隨機抽取的產(chǎn)品數(shù),再根據(jù)甲地瓷器質(zhì)量頻率分布直方圖和乙地瓷器質(zhì)量扇形統(tǒng)計圖完成的列聯(lián)表,計算出,對照表格中的數(shù)據(jù)可得結(jié)論.

(1)由頻率直方圖得:,解得,

估計甲地瓷器質(zhì)量指標值的平均值為:

(2)設從甲地的瓷器中隨機抽取了件產(chǎn)品,則從乙地的瓷器中隨機抽取了件產(chǎn)品,

∵樣本中甲地的特等品比乙地的特等品多10個,∴,解得,

∴根據(jù)甲地瓷器質(zhì)量頻率分布直方圖和乙地瓷器質(zhì)量扇形統(tǒng)計圖完成的列聯(lián)表如下表所示:

物等品

非特等品

合計

甲地

40

160

200

乙地

30

70

100

合計

70

230

300

,

∴沒有95%的把握認為甲、乙兩地的瓷器質(zhì)量有差異.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面,,的中點為.

(Ⅰ)求證:;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(Ⅰ)求橢圓方程;

(Ⅱ)設為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線,分別交直線,兩點. 求證:,兩點的縱坐標之積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知直線的極坐標方程為,曲線的參數(shù)方程為為參數(shù),.

Ⅰ)當時,判斷直線與曲線的位置關系;

Ⅱ)設直線軸的交點為,且與曲線交于兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】太極圖被稱為“中華第一圖”.從孔廟大成殿梁柱,到樓觀臺、三茅宮標記物;從道袍、卦攤、中醫(yī)、氣功、武術到韓國國旗,太極圖無不躍居其上.這種廣為人知的太極圖,其形狀如陰陽兩魚互抱在一起,因而被稱為“陰陽魚太極圖”.在如圖所示的陰陽魚圖案中,陰影部分可表示為,設點,則的最大值與最小值之差是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,,的中點,且.

(1)求證:平面;(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019924日國家統(tǒng)計局在慶祝中華人民共和國成立70周年活動新聞中心舉辦新聞發(fā)布會指出,1952年~2018年,我國GDP679.1億元躍升至90.03萬億元,實際增長174倍;人均GDP119元提高到6.46萬元,實際增長70倍.全國各族人民,砥礪奮進,頑強拼搏,實現(xiàn)了經(jīng)濟社會的跨越式發(fā)展.如圖是全國2010年至2018GDP總量(萬億元)的折線圖.

注:年份代碼19分別對應年份20102018.

1)由折線圖看出,可用線性回歸模型擬合與年份代碼的關系,請用相關系數(shù)加以說明;

2)建立關于的回歸方程(系數(shù)精確到0.01),預測2019年全國GDP的總量.

附注:參考數(shù)據(jù):,,.

參考公式:相關系數(shù);

回歸方程中斜率和截距的最小二乘法估計公式分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,為線段上一點.

(1)若,則在線段上是否存在點,使得平面?若存在,請確定點的位置;若不存在,請說明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前n項和為,已知,,.

(1)證明:為等比數(shù)列,求出的通項公式;

(2)若,求的前n項和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說明理由.

查看答案和解析>>

同步練習冊答案