已知拋物線和橢圓都經(jīng)過點,它們在軸上有共同焦點,橢圓的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

(1) ,
(2)

解析試題分析:解:(1)設(shè)拋物線方程為,將代入方程得
-------------------2分
由題意知橢圓、雙曲線的焦點為 3分
對于橢圓,
,
所以橢圓方程為- -6分
(2)設(shè)------------(7分)
- (9分)
恒成立 10分

 12分
考點:圓錐曲線方程的求解和運用
點評:解決的關(guān)鍵是根據(jù)圓錐曲線的性質(zhì)來求解其方程,同時在拋物線中利用兩點的距離公式結(jié)合不等式來得到求解范圍,注意中檔題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,直線的參數(shù)方程為(t為參數(shù)),它與曲線交于A、B兩點。
(1)求的長;
(2)在以為極點,軸的正半軸為極軸建立極坐標系,設(shè)點P的極坐標為,求點P到線段AB中點M的距離。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線lykx+2(k為常數(shù))過橢圓=1(ab>0)的上頂點B和左焦點F,直線l被圓x2y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知兩定點,,動點滿足,由點軸作垂線段,垂足為,點滿足,點的軌跡為.
(1)求曲線的方程;
(2)過點作直線與曲線交于,兩點,點滿足為原點),求四邊形面積的最大值,并求此時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知平面內(nèi)一動點到點的距離與點軸的距離的差等于1.(I)求動點的軌跡的方程;(II)過點作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點,與軌跡相交于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)設(shè)橢圓與雙曲線有相同的焦點,是橢圓與雙曲線的公共點,且的周長為,求橢圓的方程;
我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓”的方程為.設(shè)“盾圓”上的任意一點的距離為,到直線的距離為,求證:為定值;
 
(3)由拋物線弧)與第(1)小題橢圓弧)所合成的封閉曲線為“盾圓”.設(shè)過點的直線與“盾圓”交于兩點,),試用表示;并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


已知橢圓:的一個焦點為且過點.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的上下頂點分別為A1,A2,P是橢圓上異于A1,A2的任一點,直線PA1PA2分別交軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T
證明:線段OT的長為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓,左、右兩個焦點分別為、,上頂點,為正三角形且周長為6.
(1)求橢圓的標準方程及離心率;
(2)為坐標原點,是直線上的一個動點,求的最小值,并求出此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知中心在原點,焦點在坐標軸上的橢圓,它的離心率為,一個焦點和拋物線的焦點重合,過直線上一點引橢圓的兩條切線,切點分別是.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點處的橢圓的切線方程是. 求證:直線恒過定點;并出求定點的坐標.
(Ⅲ)是否存在實數(shù),使得恒成立?(點為直線恒過的定點)若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案