【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,A1B與AB1交于點D,A1C與AC1交于點E.求證:
(1)DE∥平面B1BCC1;
(2)平面A1BC⊥平面A1ACC1 .
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1的極坐標方程為ρ2cos2θ=18,曲線C2的極坐標方程為θ= ,曲線C1 , C2相交于A,B兩點.
(1)求A,B兩點的極坐標;
(2)曲線C1與直線 (t為參數(shù))分別相交于M,N兩點,求線段MN的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某動物園要為剛入園的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為 (∠ACB= ),墻AB的長度為6米,(已有兩面墻的可利用長度足夠大),記∠ABC=θ
(1)若θ= ,求△ABC的周長(結果精確到0.01米);
(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積△ABC的面積盡可能大,問當θ為何值時,該活動室面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)在處的切線方程;
(2)若函數(shù)在上為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有1000根某品種的棉花纖維,從中隨機抽取50根,纖維長度(單位:mm)的數(shù)據(jù)分組及各組的頻數(shù)如表,據(jù)此估計這1000根中纖維長度不小于37.5mm的根數(shù)是 .
纖維長度 | 頻數(shù) |
[22.5,25.5) | 3 |
[25.5,28.5) | 8 |
[28.5,31.5) | 9 |
[31.5,34.5) | 11 |
[34.5,37.5) | 10 |
[37.5,40.5) | 5 |
[40.5,43.5] | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點為直線上一點,過點作的垂線與以為直徑的圓相交于,兩點.
(1)若,求圓的方程;
(2)求證:點始終在某定圓上.
(3)是否存在一定點(異于點),使得為常數(shù)?若存在,求出定點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù) ,則關于函數(shù)f(x)有以下四個命題( )
①x∈R,f(f(x))=1;
②x0 , y0∈R,f(x0+y0)=f(x0)+f(y0);
③函數(shù)f(x)是偶函數(shù);
④函數(shù)f(x)是周期函數(shù).
其中真命題的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x1 , x2是函數(shù)f(x)=2sin2x+cos2x﹣m在[0, ]內(nèi)的兩個零點,則sin(x1+x2)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足an>1,其前n項和Sn滿足6Sn=an2+3an+2
(1)求數(shù)列{an}的通項公式及前n項和Sn;
(2)設數(shù)列{bn}滿足bn= ,且其前n項和為Tn , 證明: ≤Tn< .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com