【題目】已知函數(shù)f(x)=loga(x+a)(a>0且a≠1)的圖象過點(﹣1,0),g(x)=f(x)+f(﹣x).
(Ⅰ)求函數(shù)g(x)的定義域;
(Ⅱ)寫出函數(shù)g(x)的單調(diào)區(qū)間,并求g(x)的最大值.
【答案】(Ⅰ)(﹣2,2),(Ⅱ)單調(diào)增區(qū)間(﹣2,0),單調(diào)遞減區(qū)間(0,2),最大值2
【解析】
(Ⅰ)根據(jù)函數(shù)過點(﹣1,0),計算得到a=2,代入得到g(x)=f(x)+f(﹣x)
,定義域滿足得到答案.
(Ⅱ)利用復(fù)合函數(shù)的單調(diào)性到單調(diào)增區(qū)間(﹣2,0),單調(diào)遞減區(qū)間(0,2),再計算最值得到答案.
(Ⅰ)f(x)=loga(x+a)(a>0且a≠1)的圖象過點(﹣1,0),∴a﹣1=1即a=2,
∴g(x)=f(x)+f(﹣x)=log2(x+2)+log2(﹣x+2)
由題意可得,,即﹣2<x<2
∴函數(shù)g(x)的定義域(﹣2,2)
(Ⅱ)
根據(jù)復(fù)合函數(shù)的單調(diào)性可知g(x)的單調(diào)增區(qū)間(﹣2,0),單調(diào)遞減區(qū)間(0,2)
當(dāng)x=0時,g(x)取得最大值2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線為.
()若直線的斜率為,求函數(shù)的單調(diào)區(qū)間.
()若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正六棱錐的底面邊長為,高為.現(xiàn)從該棱錐的個頂點中隨機(jī)選取個點構(gòu)成三角形,設(shè)隨機(jī)變量表示所得三角形的面積.
(1)求概率的值;
(2)求的分布列,并求其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來越受到廣大考生的青睞,下表是西南地區(qū)某大學(xué)近五年的錄取平均分與省一本線對比表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
省一本線 | 505 | 500 | 525 | 500 | 530 |
錄取平均分533 | 534 | 566 | 547 | 580 | |
錄取平均分與省一本線分差y | 28 | 34 | 41 | 47 | 50 |
(1)根據(jù)上表數(shù)據(jù)可知,y與t之間存在線性相關(guān)關(guān)系,求y關(guān)于t的線性回歸方程;
(2)據(jù)以往數(shù)據(jù)可知,該大學(xué)每年的錄取分?jǐn)?shù)X服從正態(tài)分布,其中為當(dāng)年該大學(xué)的錄取平均分,假設(shè)2019年該省一本線為520分,李華2019年高考考了569分,他很喜歡這所大學(xué),想第一志愿填報,請利用概率與統(tǒng)計知識,給李華一個合理的建議.(第一志愿錄取可能性低于,則建議謹(jǐn)慎報考)
參考公式:,.
參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線過點,其參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若與交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,曲線C由以原點為圓心,半徑為2的半圓和中心在原點,焦點在x軸上的半橢圓構(gòu)成,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程;
(2)已知射線與曲線C交于點M,點N為曲線C上的動點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角坐標(biāo)系中,曲線C由以原點為圓心,半徑為2的半圓和中心在原點,焦點在x軸上的半橢圓構(gòu)成,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程;
(2)已知射線與曲線C交于點M,點N為曲線C上的動點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個蜜柚進(jìn)行測重,其質(zhì)量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質(zhì)量落在, 的蜜柚中抽取5個,再從這5個蜜柚中隨機(jī)抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元/千克收購;
B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為山腳兩側(cè)共線的3點,在山頂處測得3點的俯角分別為,計劃沿直線開通穿山隧道,為求出隧道的長度,你認(rèn)為還需要直接測量出中哪些線段的長度?根據(jù)條件,并把你認(rèn)為需要測量的線段長度作為已知量,寫出計算隧道長度的運算步驟.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com