【題目】某支教隊有8名老師,現(xiàn)欲從中隨機選出2名老師參加志愿活動,

(1)若規(guī)定選出的至少有一名女老師,則共有18種不同的需安排方案,試求該支教隊男、女老師的人數(shù);

(2)在(1)的條件下,記為選出的2位老師中女老師的人數(shù),寫出的分布列.

【答案】(1)男老師5人,女老師3人(2)見解析

【解析】

(1)先設(shè)男老師總共有人,則女老師共有人,根據(jù)題意得到,求解即可得出結(jié)果;

2)先由題意確定的可能取值,求出對應(yīng)概率,即可得出分布列.

(1)不妨設(shè)男老師總共有人,則女老師共有人,(,

從這8位老師中選出至少1名女老師,共有種不同的方法,

即有:,解得,

所以該支教隊共有男老師5人,女老師3人

(2)的可能取值為0,1,2,

表示選派2位男老師,這時,

表示選派1位男老師與1位女老師,這時

表示選派2位女老師,這時

的分布列為:

0

1

2

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐B-AEDC中,平面AEDC⊥平面ABC,F(xiàn)BC的中點,PBD的中點,且AE//DC,ACD=BAC=90°,DC=AC=AB=2AE

(1)證明:EP⊥平面BCD;

(2)DC=2,求三棱錐E-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)為常數(shù),函數(shù),給出以下結(jié)論:

(1)若,則存在唯一零點

(2)若,則

(3)若有兩個極值點,則

其中正確結(jié)論的個數(shù)是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)以往的經(jīng)驗,某建筑工程施工期間的降水量(單位:)對工期的影響如下表:

降水量

工期延誤天數(shù)

0

1

3

6

根據(jù)某氣象站的資料,某調(diào)查小組抄錄了該工程施工地某月前天的降水量的數(shù)據(jù),繪制得到降水量的折線圖,如下圖所示.

(1)根據(jù)降水量的折線圖,分別求該工程施工延誤天數(shù)的頻率;

(2)以(1)中的頻率作為概率,求工期延誤天數(shù)的分布列及數(shù)學期望與方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在正方形中,的中點,點在線段上,且.若將 分別沿折起,使兩點重合于點,如圖2.

圖1 圖2

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲、乙兩種棉花中各抽測了25根棉花的纖維長度(單位: ) 組成一個樣本,且將纖維長度超過315的棉花定為一級棉花.設(shè)計了如下莖葉圖:

(1)根據(jù)以上莖葉圖,對甲、乙兩種棉花的纖維長度作比較,寫出兩個統(tǒng)計結(jié)論(不必計算);

(2)從樣本中隨機抽取甲、乙兩種棉花各2根,求其中恰有3根一級棉花的概率;

(3)用樣本估計總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機抽取1根,求其中一級棉花根數(shù)X的分布列及數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論上的零點個數(shù);

(2)當時,若存在,使,求實數(shù)的取值范圍.(為自然對數(shù)的底數(shù),其值為2.71828……)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)對任意x,yR,總有f(x)f(y)f(xy),且當x>0時,f(x)<0f(1)=-.

(1)求證:f(x)R上的單調(diào)減函數(shù).

(2)f(x)[3,3]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】江蘇省淮陰中學科技興趣小組在計算機上模擬航天器變軌返回試驗.設(shè)計方案如圖,航天器運行(按順時針方向)的軌跡方程為,變軌(即航天器運行軌跡由橢圓變?yōu)閽佄锞)后返回的軌跡是以軸為對稱軸、為頂點的拋物線的實線部分,降落點為.觀測點同時跟蹤航天器,試問:當航天器在軸上方時,觀測點,測得離航天器的距離分別為多少時,應(yīng)向航天器發(fā)出變軌指令?(變軌指令發(fā)出時航天器立即變軌)。

查看答案和解析>>

同步練習冊答案