已知sinα=
3
2
,α∈(
π
2
,π)
(Ⅰ)求tanα的值;
(Ⅱ)求cos(α+
π
3
)的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(Ⅰ)由sinα的值及α的范圍,利用同角三角函數(shù)間基本關(guān)系求出cosα的值,進(jìn)而確定出tanα的值;
(Ⅱ)原式利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),將各自的值代入計(jì)算即可求出值.
解答: 解:(Ⅰ)∵sinα=
3
2
,α∈(
π
2
,π),
∴cosα=-
1-sin2α
=-
1
2

則tanα=
sinα
cosα
=-
3
;
(Ⅱ)∵sinα=
3
2
,cosα=-
1
2
,
∴原式=
1
2
cosα-
3
2
sinα=
1
2
×(-
1
2
)-
3
2
×
3
2
=-1.
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一自行車以6m/s的速度向北行駛,這時(shí)騎車人感覺(jué)風(fēng)自正西方向吹來(lái),但站在地面上測(cè)得風(fēng)從南偏西60°方向吹來(lái),試求:風(fēng)向?qū)τ谲嚨乃俣群惋L(fēng)向?qū)τ诘氐乃俣龋?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,∠B=60°,sinA=
4
5
,b=
3

(1)求sinC的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3x2+bx+c在x=1處的切線是y=(3a-3)x-3a+4.
(1)試用a表示b和c;
(2)求函數(shù)f(x)≥-
3
2
在[1,3]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解某單位員工的月工資水平,從該單位500位員工中隨機(jī)抽取了50位進(jìn)行調(diào)查,得到如下頻數(shù)分布表:
月工資
(單位:百元)
[15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
男員工數(shù) 1 8 10 6 4 4
女員工數(shù) 4 2 5 4 1 1
(Ⅰ)完成如圖月工資頻率分布直方圖(注意填寫(xiě)縱坐標(biāo));
(Ⅱ)試由圖估計(jì)該單位員工月平均工資;
(Ⅲ)若從月工資在[25,35)和[45,55)兩組所調(diào)查的女員工中隨機(jī)選取2人,試求這2人月工資差不超過(guò)1000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高三4班有50名學(xué)生進(jìn)行了一場(chǎng)投籃測(cè)試,其中男生30人,女生20人.為了了解其投籃成績(jī),甲、乙兩人分別都對(duì)全班的學(xué)生進(jìn)行編號(hào)(1~50號(hào)),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績(jī)大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
編號(hào) 性別 投籃成績(jī)
2 90
7 60
12 75
17 80
22 83
27 85
32 75
37 80
42 70
47 60
甲抽取的樣本數(shù)據(jù)   
編號(hào) 性別 投籃成績(jī)
1 95
8 85
10 85
20 70
23 70
28 80
33 60
35 65
43 70
48 60
乙抽取的樣本數(shù)據(jù)
(Ⅰ)觀察乙抽取的樣本數(shù)據(jù),若從男同學(xué)中抽取兩名,求兩名男同學(xué)中恰有一名非優(yōu)秀的概率.
(Ⅱ)請(qǐng)你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績(jī)和性別有關(guān)?
優(yōu)秀 非優(yōu)秀 合計(jì)
合計(jì) 10
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說(shuō)明理由.
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.010 0.005 0.001
k 2.072 2.706 3.841 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A={x|2≤x≤6},B={x|3x-7≥8-2x},
(1)A∪B,∁R(A∩B)
(2)若C={x|a-4<x≤a+4},且A⊆C,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校高三2班有48名學(xué)生進(jìn)行了一場(chǎng)投籃測(cè)試,其中男生28人,女生20人.為了了解其投籃成績(jī),甲、乙兩人分別對(duì)全班的學(xué)生進(jìn)行編號(hào)(1~48號(hào)),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績(jī)大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
編號(hào) 性別 投籃成績(jī)
 3 90
7 60
11 75
15 80
19 85
23 80
27 95
31 80
35 80
39 60
43 75
47 55
甲抽取的樣本數(shù)據(jù)                                                              
編號(hào) 性別 投籃成績(jī)
 1 95
8 85
10 85
17 80
23 60
24 90
27 80
31 80
35 65
37 35
41 60
46 75
乙抽取的樣本數(shù)據(jù)      
(Ⅰ)從甲抽取的樣本數(shù)據(jù)中任取兩名同學(xué)的投籃成績(jī),記“抽到投籃成績(jī)優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望;
(Ⅱ)請(qǐng)你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績(jī)和性別有關(guān)?
  優(yōu)秀 非優(yōu)秀 合計(jì)
     
     
合計(jì)     12
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說(shuō)明理由.
下面的臨界值表供參考:
0.15 0.10 0.05 0.010 0.005 0.001
2.072 2.706 3.841 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n-a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x2+y2=1,設(shè)z=
1
x2
+
y
x
,則z的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案