【題目】給出下列五個命題:

函數(shù)的一條對稱軸是

函數(shù)的圖象關(guān)于點(,0)對稱;

正弦函數(shù)在第一象限為增函數(shù)

,則,其中

以上四個命題中正確的有    (填寫正確命題前面的序號)

【答案】①②

【解析】

利用三角函數(shù)的圖象與性質(zhì)處理有關(guān)命題的正誤.

把x=代入函數(shù)得 y=1,為最大值,故正確.

結(jié)合函數(shù)y=tanx的圖象可得點(,0)是函數(shù)y=tanx的圖象的一個對稱中心,故正確.

正弦函數(shù)在第一象限為增函數(shù),不正確,如390°60°,都是第一象限角,但sin390°<sin60°.

,則有 2x1=2kπ+2x2,或 2x1=2kπ+π﹣(2x2),k∈z,

∴x1﹣x2=kπ,或x1+x2=kπ+,k∈z,故不正確.

故答案為①②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, , .

(Ⅰ)若的中點,求證: 平面;

(Ⅱ)若 ,求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年6月14日,第二十一屆世界杯尼球賽在俄羅斯拉開了帷幕,某大學(xué)在二年級作了問卷調(diào)查,從該校二年級學(xué)生中抽取了人進行調(diào)查,其中女生中對足球運動有興趣的占,而男生有人表示對足球運動沒有興趣.

(1)完成列聯(lián)表,并回答能否有的把握認為“對足球是否有興趣與性別有關(guān)”?

有興趣

沒有興趣

合計

合計

(2)若將頻率視為概率,現(xiàn)再從該校二年級全體學(xué)生中,采用隨機抽樣的方法每飲抽取名學(xué)生,抽取次,記被抽取的名學(xué)生中對足球有興趣的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學(xué)期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B分別是橢圓的左、右頂點,P為橢圓C的下頂點,F為其右焦點M是橢圓C上異于A、B的任一動點,過點A作直線以線段AF為直徑的圓交直線AM于點A、N,連接FN交直線l于點G的坐標為,且,橢圓C的離心率為

求橢圓C的方程;

試問在x軸上是否存在一個定點T,使得直線MH必過該定點T?若存在,求出點T的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)解關(guān)于的不等式;

(2)若不等式的解集為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:

0

0

2

0

0

(1)請將上表數(shù)據(jù)補充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;

(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺為宣傳本市,隨機對本市內(nèi)歲的人群抽取了人,回答問題本市內(nèi)著名旅游景點有哪些,統(tǒng)計結(jié)果如圖表所示.

組號

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的頻率

1

[15,25)

a

0.5

2

[25,35)

18

x

3

[35,45)

b

0.9

4

[45,55)

9

0.36

5

[55,65]

3

y

(1)分別求出的值;

(2)根據(jù)頻率分布直方圖估計這組數(shù)據(jù)的中位數(shù)(保留小數(shù)點后兩位)和平均數(shù);

(3)若第1組回答正確的人員中,有2名女性,其余為男性,現(xiàn)從中隨機抽取2人,求至少抽中1名女性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口的水深(米)是時間,單位:小時)的函數(shù),下面是每天時間與水深的關(guān)系表:

0

3

6

9

12

15

18

21

24

10

13

9.9

7

10

13

10.1

7

10

經(jīng)過長期觀測, 可近似的看成是函數(shù)

1)根據(jù)以上數(shù)據(jù),求出的解析式

2)若船舶航行時,水深至少要11.5米才是安全的,那么船舶在一天中幾個小時可以安全的進出該港?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點.

(1)設(shè)P是上的一點,且AP⊥BE,求∠CBP的大小;

(2)當(dāng)AB=3,AD=2時,求二面角E-AG-C的大小.

查看答案和解析>>

同步練習(xí)冊答案