【題目】已知a∈R,函數(shù)f(x)=log2( +a).
(1)當a=1時,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+ )恒成立,求a的取值范圍;
(3)若關于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,求a的取值范圍.
【答案】
(1)解:由log2( <0,得0< <1,
解得x∈(﹣∞,﹣1)
(2)解:由題意知 ,x+ >0,得x∈(0,+∞),
又由題意可得 ,即a ,
又a,x∈(0,+∞),∴a ,即0<a<4
(3)解: =(a﹣4)x+2a﹣5,(a﹣4)x2+(a﹣5)x﹣1=0,
當a=4時,x=﹣1,經檢驗,滿足題意;
當a=3時,x1+x2=﹣1,經檢驗,滿足題意;
當a≠3且a≠4時, ,x2=﹣1,x1=x2,
x1是原方程的解當且僅當 >0,即a>2;
x2是原方程的解當且僅當 >0,即a>1.
于是滿足題意的a∈1,2].
綜上,a的取值范圍為(1,2]∪{3,4}
【解析】(1)由log2( <0,得0< <1,解得即可;(2)先滿足定義域 ,x+ >0,再根據(jù)條件 ,即a ,(3)分類討論,分a=4,a=3,a≠3且a≠4進行分析.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知平面直角坐標系,以為極點, 軸的非負半軸為極軸建立極坐標系, 點的極坐標為,曲線的參數(shù)方程為(為參數(shù)).
(1)寫出點的直角坐標及曲線的直角坐標方程;
(2)若為曲線上的動點,求的中點到直線: 的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線在第一象限內的點到焦點的距離為.
(1)若,過點, 的直線與拋物線相交于另一點,求的值;
(2)若直線與拋物線相交于兩點,與圓相交于兩點, 為坐標原點, ,試問:是否存在實數(shù),使得的長為定值?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是各項為正的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{an+bn} 的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,且對任意非負整數(shù)均有: .
(1)求;
(2)求證:數(shù)列是等差數(shù)列,并求的通項;
(3)令,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,△ABC的三個頂點為A(﹣3,0),B(2,1),C(﹣2,3),求:
(Ⅰ)BC邊上高線AH所在直線的方程;
(Ⅱ)若直線l過點B且橫、縱截距互為相反數(shù),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知幾何體P﹣ABCD如圖,面ABCD為矩形,面ABCD⊥面PAB,且面PAB為正三角形,若AB=2,AD=1,E、F分別為AC、BP中點,
(Ⅰ)求證:EF∥面PCD;
(Ⅱ)求直線BP與面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的圖象在處的切線方程;
(2)若函數(shù)在定義域上為單調增函數(shù).
①求最大整數(shù)值;
②證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com