【題目】已知函數(shù)定義在上的奇函數(shù),且,對(duì)任意、時(shí),有成立.

1)解不等式

2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;(2.

【解析】

1)設(shè),結(jié)合條件,可得出,從而可得出函數(shù)上為增函數(shù),再由奇函數(shù)的性質(zhì)將所求不等式化為,利用函數(shù)的定義域和單調(diào)性得出關(guān)于的不等式組,解出即可;

2)由題意得出對(duì)任意恒成立,從而得出對(duì)任意恒成立,構(gòu)造函數(shù),可得出,得出關(guān)于實(shí)數(shù)的不等式組,解出即可.

1)設(shè),則,由,可得,則函數(shù)上為增函數(shù).

函數(shù)是定義在上的奇函數(shù),

,得

,解得,因此,不等式的解集為;

(2)由于函數(shù)上的增函數(shù),則,

由題意可知,不等式對(duì)任意恒成立,

即不等式對(duì)任意恒成立,

構(gòu)造函數(shù),則,解得.

因此,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】菜農(nóng)定期使用低害殺蟲(chóng)農(nóng)藥對(duì)蔬菜進(jìn)行噴灑,以防止害蟲(chóng)的危害,但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈。假設(shè)1千克該蔬菜用清水千克清洗后,蔬菜上殘留的農(nóng)藥為微克,通過(guò)樣本數(shù)據(jù)得到關(guān)于的散點(diǎn)圖。由數(shù)據(jù)分析可用函數(shù)擬合的關(guān)系.

(1)求的回歸方程精確到0.1);

(2)已知對(duì)于殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量不超過(guò)20微克時(shí)對(duì)人體無(wú)害。為了放心食用該蔬菜,請(qǐng)估計(jì)至少需要用多少克的清水清洗1千克蔬菜?(答案精確到0.1)

附:①參考數(shù)據(jù):,,(其中),。

②參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門(mén)對(duì)某食品廠生產(chǎn)甲、乙兩種食品進(jìn)行了檢測(cè)調(diào)研,檢測(cè)某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測(cè)量數(shù)據(jù)的莖葉圖(單位:毫克).

規(guī)定:當(dāng)食品中的有害微量元素的含量在時(shí)為一等品,在為二等品,20以上為劣質(zhì)品.

1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè),求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;

2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計(jì)得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計(jì)這兩種食品為一等品、二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,設(shè)這兩件食品給該廠帶來(lái)的盈利為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為“中學(xué)數(shù)學(xué)聯(lián)賽”選拔人才,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:分?jǐn)?shù)不小于本次考試成績(jī)中位數(shù)的具有復(fù)賽資格,某校有900名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間內(nèi),其頻率分布直方圖如圖.

(1)求獲得復(fù)賽資格應(yīng)劃定的最低分?jǐn)?shù)線;

(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間各抽取多少人?

(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學(xué)校打算給這4人一定的物質(zhì)獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予500元獎(jiǎng)勵(lì),若該生分?jǐn)?shù)在給予800元獎(jiǎng)勵(lì),用Y表示學(xué)校發(fā)的獎(jiǎng)金數(shù)額,求Y的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平頂山市公安局交警支隊(duì)依據(jù)《中華人民共和國(guó)道路交通安全法》第條規(guī)定:所有主干道路凡機(jī)動(dòng)車途經(jīng)十字口或斑馬線,無(wú)論轉(zhuǎn)彎或者直行,遇有行人過(guò)馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設(shè)備所抓拍的個(gè)月內(nèi),機(jī)動(dòng)車駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

違章駕駛員人數(shù)

(Ⅰ)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預(yù)測(cè)該路段月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解人們對(duì)“2019年3月在北京召開(kāi)的第十三屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十三屆全國(guó)委員會(huì)第二次會(huì)議”的關(guān)注度,某部門(mén)從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如右表所示:

年齡

關(guān)注度非常高的人數(shù)

15

5

15

23

17

(Ⅰ)由頻率分布直方圖,估計(jì)這100人年齡的中位數(shù)和平均數(shù);

(Ⅱ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“兩會(huì)”的關(guān)注度存在差異?

(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再?gòu)牧酥须S機(jī)選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.

45歲以下

45歲以上

總計(jì)

非常髙

一般

總計(jì)

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,().

(1)若函數(shù)有極值,求的值;

(2)若函數(shù)在區(qū)間上為減函數(shù),求的取值范圍;

(3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為拋物線上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)的直線交拋物線于另一點(diǎn),軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí)為正三角形.

(1)求拋物線的方程;

(2)若直線,和拋物線有且只有一個(gè)公共點(diǎn),試問(wèn)直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為實(shí)數(shù)).

(I)討論函數(shù)的單調(diào)性;

(II)若上的恒成立,求的范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案